
Kripke Open Bisimulation
A Marriage of Game Semantics and Operational Techniques

Guilhem Jaber1 and Nicolas Tabareau2

1 Queen Mary University, London, UK
2 Inria, Nantes, France

Abstract. Proving that two programs are contextually equivalent is notoriously
hard, particularly for functional languages with references (i.e., local states).
Many operational techniques have been designed to prove such equivalences, and
fully abstract denotational model, using game semantics, have been built for such
languages. In this work, we marry ideas coming from trace semantics, an opera-
tional variant of game semantics, and from Kripke logical relations, notably the
notion of worlds as transition systems of invariants, to define a new operational
technique: Kripke open bisimulations. It is the first framework whose complete-
ness does not rely on any closure by contexts.

1 Introduction

Many operational methods have been designed to reason about contextual equivalence
of stateful programs. This profusion comes mainly from the difficulty to know exactly
what kind of equivalence can be proven or not by a particular method. Even if complete-
ness have been stated for some of those methods, the proof of completeness always re-
lies on a notion of closure by contexts, which prevents to conclude that all the proofs of
equivalence can be performed. For instance, Kripke logical relations (KLR), one of the
most popular (and complete) method, were in their first version insufficient to prove the
equivalence of two simple programs, dubbed at the time the “awkward example”. This
is because the notion of worlds as invariants introduced in the seminal paper of Pitts and
Stark [12] is too restricted. KLR have later been refined by Ahmed, Dreyer et al.[1,2],
where a transition system between such invariant is used to overcome this restriction.
A sibling relational method to reason about contextual equivalence is given by bisimu-
lations. Environmental [16,13] and Normal Form (a.k.a. Open) Bisimulations [15,7,8]
are (set of) relations on terms defined coinductively w.r.t. the operational reduction.
Their underlying idea is that contextual equivalence can be seen as the greatest adequate
bisimulation which is also a congruence. The issue with this approach is that building a
bisimulation is a complex task, especially when contexts do not have control operators
and thus are not powerful enough to discriminate terms. Recently, Relation Transition
Systems [3] (RTS) have been introduced to take the best of the two approaches. While
in the work on bisimulation, a class of bisimulation is defined and then shown to be
a congruence, RTS provide a single bisimulation, whose definition is parametrized by
a transition system—as it is done for KLR—plus a notion of global knowledge. This
means that when proving equivalence of two terms, only the transition system of heap
invariants and the global knowledge need to be constructed. Then it just remains to

show that the two terms are in the corresponding bisimulation. But RTS are not known
to be complete (the first version do not cover, e.g., η-equivalence).

On another line of work, fully-abstract denotational model of higher-order refer-
ences have been designed, in terms of trace semantics [6] or game semantics [9]. In
theory, it is thus possible to prove equivalence of programs by computing their deno-
tation in such models, then prove that the denotations are equal. This is however in
general a really complex task. Algorithmic game semantics [10] has been designed to
perform automatically this task, using an automaton representation of the denotation of
a term. However, this can be done only for fragments of the language where the type of
terms is restricted. Thus this methods cannot be applied to unrestricted terms.

Overall, transition systems constitute a central object in this area. One can wonder
whether they have been used for the same purpose. In trace semantics [6], the interactive
reduction which generates traces can be seen as a bipartite Labeled Transition System
(LTS) between player (i.e., the term) and opponent (i.e., contexts) configurations. Such
LTSs carry a lot of information: the control flow between the term and any context, on
each transition the actions performed, and on each state the configuration that the in-
teractive reduction has reached. In the work on KLR and RTS, the transition system is
rather an abstraction of the control flow, which is shared between two terms, and states
only provide invariants on heaps. But among these works, those that are complete all
use a notion of closure by context at one point in their definition. The only exception
is the work of Stovring and Lassen [15], but for an untyped λ-calculus with a control
operator (contexts having access to such operators, they can discriminate more terms).
It is interesting to notice that in [7], the completeness of their bisimulation, once ref-
erences are added to their language, was conjectured (albeit for a continuation passing
style calculus, where reasoning on divergence is easier).

In this paper, we propose Kripke Open Bisimulations (KOBs), which are derived
from bisimulations on configurations of the LTS generating traces, but are rather defined
directly on terms with the usual operational semantics. The motto of KOBs could be:

“to prove equivalence of programs, only a transition system of invariants is needed”

Indeed, its definitions can be carried on in a simple logic that does not make use of
quantification over λ-terms nor of a notion of closure. So once the transition system
of invariants on heaps has been provided, it is straightforward to conduct the proof
of equivalence, by simply reducing the terms operationally and checking that we get
synchronized behavior. Via the link to trace semantics, we prove full abstraction of
KOBs, without relying on any kind of closure, which suggests that all the reasoning
principles necessary to reason about equivalence of stateful programs are present in
KOBs.

Reasoning Principles behind Kripke Open Bisimulations. When reasoning on con-
textual equivalence, the key notion is to determine what can be observed by a context.
This, of course, depends on the programming language in which contexts are written.
For example, when contexts have access to a mutable memory, they can store how many
times a function (or callback) provided to a term is called. This means that two terms are
equivalent only when they perform the same callbacks, e.g., λf.f(); f() is not equiva-
lent in that case to λf.f(). Moreover, with such a memory, contexts can also keep track

2

of the order in which arguments are applied to callbacks. Thus, λf.(f 1) + (f 2) is
not equivalent to λf.(f 2) + (f 1) in this setting. To sum-up, when reasoning on a lan-
guage with a mutable memory, two terms are contextually equivalent only if the control
flow between the term and contexts are equal, such control flow taking into account the
functional values provided by a term to the context via callbacks. This idea shows up in
game semantics, where the intensional model is fully abstract for a language with store,
without considering a quotient of the model.

But in this setting, contexts can also observe memory cells created or modified by
a term. This is however only the case for languages with unrestricted memory man-
agement like C or assembly code, where pointer arithmetic is allowed. This is not
the case for languages like ML, where memory is implemented with references, rep-
resented using locations, on which the typing system forbids any kind of arithmetic.
Locations can yet be passed as arguments to functions. This means that a disclosure pro-
cess of locations can happen between a term and the context. So part of the references
created by a term can become observable by the context, as soon as the correspond-
ing locations are disclosed. For example, let x = ref 0 in λy : (ref Int).x == y and
λy : (ref Int).false are equivalent. Indeed, the location stored in x has not been dis-
closed and remains private to the term, so that contexts have no access to it and cannot
pass it as an argument to the λ-abstraction. This means that we need to keep track of
such disclosure process of locations to reason about equivalence of programs for lan-
guages like ML. But, we must also keep track of the way references that remain private
to a term evolve. Indeed, when a term recovers the control, after performing a callback
or returning a higher-order value, its execution also depends on its private part of the
heap, and not only on the values provided by the context (either directly as arguments
or via the disclosed part of the heap).

Transition systems representing the control flow between a term and a context, to-
gether with labels on transitions representing the invariants on heaps and the disclosure
of locations, are thus important pieces of information to reason about equivalence of
programs in the presence of a mutable memory. Following the work on KLR [2], some
states of transition systems are tagged as inconsistent to deal with the so-called deferred
divergence examples. This technique corresponds to the restriction to complete plays in
game semantics, and would not be necessary if the language we consider featured some
simple notion of control flow operator to abort the reduction.

The goal of this paper is to marry the notion of worlds as evolving invariants of KLR
to the direct style reasoning provided by open bisimulations to provide a framework in
which the transition system is the only external information needed to decide the equiv-
alence of two programs. The price to pay for this unified framework is a complex proof
of soundness and completeness as it can no longer rely on a biorthogonality argument
(because of direct-style reasoning) nor on a generic notion of bisimulation (because
bisimulations are restricted to particular ones, specified by a relational transition sys-
tem). The proof is performed using ideas coming from nominal game semantics [9] and
its connection to trace semantics, an operational variant initiated by Laird [6].

All the detailed proofs appear in the technical appendix [5].

3

τ, σ
def
= Unit | Bool | Int | ref τ | | τ × σ | τ → σ

u, u′ def
= () | true | false | n̂ | x | l | 〈u, u′〉 | λx.M (where n ∈ Z, x ∈ Var, l ∈ Loc)

M,M ′ def= u |MM ′ |M +M ′ | if M then M ′ else M ′′ |M ==M ′ |
refM | !M |M :=M ′ | | 〈M,M ′〉 | π1(M) | π2(M) | ⊥τ

C
def
= • | λx.C | CM |MC | ref C | C :=M |M := C | !C | C ==M | . . .

K
def
= • |KM | uK | refK |K :=M | u := K | !K |K ==M | u == K | . . .

Fig. 1. Definition of RefML

2 RefML

The programming language considered in this paper is RefML, a typed call-by-value
functional language with nominal higher-order references, which is a fragment of ML.

2.1 Syntax of RefML

The syntax of types τ , values u, terms M , contexts C and evaluation contexts K of
RefML is defined in Figure 1. As usual, let x = N in M is defined as (λx.M)N
and M ;N is defined as (λx.N)M with x fresh in M . Evaluation contexts K are par-
ticular kinds of contexts, the ones that start by reducing terms that fill their hole •. For
each type τ , we use a special term ⊥τ that always diverges.

Heaps h are defined as finite partial maps Loc ⇀ Val. The empty heap is written ε.
Adding a new element to a partial map h is written h · [l ↪→ v], and is defined only if
l /∈ dom(h). We also define h[l ↪→ v], for l ∈ dom(h), as the partial function h′ which
satisfies h′(l′) = h(l′) when l′ 6= l, and h′(l) = u. The restriction of a heap h to a set of
locations L is written h|L. A heap is said to be closed when, for all l ∈ dom(h), if h(l)
is itself a location then h(l) ∈ dom(h). Taking a set L of locations and a heap h, we

define the image of L by h, written h∗(L) as h∗(L)
def
= ∪j≥0 h

j(L) where h0(L) = L
and hj+1(L) = h(hj(L)) ∩ Loc.

Typing Rules. Typing judgments are of the form Σ;Γ ` M : τ , where Σ and Γ are
respectively typing contexts for locations and variables. Such typing contexts are partial
maps between locations or variables to types. The typing rules of RefML are standard,
and given in Appendix A.We write Σ;Γ ` C : τ σ when Σ;Γ, x : τ ` C[x] : σ,
with x /∈ Γ . Then, we write Γ ` h : Σ if dom(h) = dom(Σ) and Σ;Γ ` h(l) : Σ(l).

2.2 Operational Semantics

The small-step operational semantics of RefML, written (M,h) 7→ (M ′, h′), is defined
in Figure 2 3. We write M {v/x} to represent the (capture-free) substitution of x by v
in M. This reduction is deterministic, and in particular we suppose that the reduction
(K[ref v], h) 7→ (K[l], h · [l ↪→ v]) chooses a location l /∈ dom(h). Using higher-
order references, usual fixpoints fix f(x).M of type τ → σ can be defined using the
Landin’s Knot: let y = ref (λx.⊥σ) in y := (λx.let f =!y in M); !y.

3 We also consider the non-deterministic reduction 7→nd, defined in the same way but for the rule
of allocation, which is defined as (K[ref v], h) 7→nd (K[l], h · [l ↪→ v]) for any l /∈ dom(h).

4

(K[(λx.M)u], h) 7→ (K[M {u/x}], h) (K[n̂+ m̂], h) 7→ (K[n̂+m], h)
(K[n̂ == n̂], h) 7→ (K[true], h) (K[n̂ == m̂], h) 7→ (K[false], h) (n 6= m)
(K[l == l], h) 7→ (K[true], h) (K[l == l′], h) 7→ (K[false], h) (l 6= l′)
(K[⊥τ], h) 7→ (K[⊥τ], h) (K[!l], h) 7→ (K[h(l)], h)
(K[ref u], h) 7→ (K[l], h · [l ↪→ u]) (K[l := u], h) 7→ (K[()], h[l ↪→ u])
(K[πi 〈M1,M2〉], h) 7→ (K[Mi], h)
(K[if b then Mtrue else Mfalse], h) 7→ (K[Mb], h)

Fig. 2. Operational Semantics of RefML

In the following, we say that a pair (M,h) is irreducible, written irred(M,h), if
it cannot be reduced anymore. Taking an irreducible pair formed by a well-typed term
M and a closed well-typed heap, where all the free variables are of functional types,
we get that M is either equal to a value or to a callback, i.e., a term of the form K[f v]
with f a free variable and v a value.

Contextual (a.k.a. observational) equivalence is defined as:

Definition 1. Taking two terms M1,M2 of the same type τ in a context Σ,Γ , we say
that M1 and M2 are contextually equivalent, written Σ;Γ ` M1 'ctx M2 : τ ,
when ∀Σ′ ⊇ Σ.∀h : Σ′ closed. ∀C s.t. Σ′;Γ ` C : τ Unit. (C[M1], h) ⇓
iff (C[M2], h) ⇓, where (C[M1], h) ⇓ means (C[M1], h) 7→∗ ((), h′).

Using closed heaps containing Σ ensures that the reduction of (C[Mi], h) cannot get
stuck, i.e., either reduces to () or diverges.

2.3 Abstract Values and Nominal Reasoning

In the following, we represent functional values (i.e., λ-abstractions) using functional
names belonging to a set FN. Abstract values 4 v are then defined as:

v, v′
def
= () | true | false | n̂ | f | l | 〈v, v′〉 with n ∈ Z, l ∈ Loc and f ∈ FN.

To each type τ , we associate a set JτK formed by pairs (v, φ) of abstract values and
typing function for functional names.

JUnitK def= {((), ε)} Jσ → τK def
= {(f, [f 7→ (σ → τ)]) | f ∈ FN}

JIntK def
= {(n̂, ε) | n ∈ Z} Jθ1 × θ2K

def
= {(〈v1, v2〉 , φ1 · φ2) | (vi, φi) ∈ JθiK}

JBoolK def= {(true, ε), (false, ε)} Jref τK def
= {(l, ε) | l ∈ Loc}

Taking a typing context Γ , we define JΓ K as the set of pairs of substitution functions
and typing function of functional names defined as

{(ρ, φ) | dom(ρ) = dom(Γ),∀(x, τ) ∈ Γ,∃φx.(ρ(x), φx) ∈ JτK, φ =
⊎

x∈dom(Γ)

φx}.

Then, we need to reason up-to permutations of both functional names and locations.
To do so, we use nominal sets, as introduced by Pitts [11]. Fixing a set of names A, we

4 By seeing functional names as variables, the operational semantics of RefML can be extended
straightforwardly to abstract values.

5

consider the group of finite permutations Perm(A) of A, i.e., the bijections π of A s.t.
the set {a ∈ A | π(a) 6= a} is finite. Then an A-nominal set is a set X equipped with
a group action (noted ∗) on Perm(A). We omit to indicate A when it is clear from the
context. A subset S of A is said to support an element t of a nominal set X when

∀π ∈ Perm(A). (∀a ∈ S. π(a) = a)⇒ π ∗ t = t.

The smallest subset of A which supports t is called the support of t, written νA(t).
Terms and heaps of RefML can be seen as a nominal set over both Loc and FN. Then,
the support of a term is (i) its set of locations if it is seen as nominal over Loc, or (ii) its
set of free functional names if it is seen as nominal over FN.

Two elements t, u of a nominal set X are said to be nominally-equivalent, written
t ∼A u if there exists π in Perm(A) s.t. t = π ∗ u holds. We sometimes need to
be explicit in the permutation when working with two nominally equivalent elements
t, u of a nominal set X . However, when this is the case, it is more convenient to work
with (typed) spans rather than permutations because spans are easier to extend than
permutations. Spans, which are equivalent to permutations, have already been used by
Stark to reason about locations, when defining logical relations for the ν-calculus [14].

Definition 2. A span S : (A × Types)
 (A × Types) is a pair of partial finite
injections (A × Types) ←↩ S ↪→ (A × Types) preserving types. We write SpanA for
the set of spans over A.

We write ε for the empty span.The image of a span S by the left (resp. right) injection
is written S1 (resp. S2). Such images can be seen as typing contexts. Reciprocally, from
a typing context Γ , we define the span Γ̂ as {(x, x, τ) | (x, τ) ∈ Γ}. The extension of a
span S at type τ with (a1, a2) ∈ A is written S ·(a1, a2, τ), when a1 /∈ S1 and a2 /∈ S2.
We say that S ′ extends S , written S ′ w S , when S ′ is a span which includes S as a
set. Two spans are disjoints, written S#S ′, when both Si,S ′i are disjoint sets. A span S
induces a finite permutation πS : A → A, using the so-called “Homogeneity Lemma”
of [11] (Lemma 1.14). Then, we define a restriction of the nominal equivalence ∼A
with respect to a span S, written X ∼S Y , if X = πS ∗ Y . We usually write Φ and D
for spans respectively over functional names and locations, and write x ∼DΦ y for the
nominal equivalence induced by those spans on a nominal set over both FN and Loc.

3 Trace Semantics

This section presents a fully abstract model of RefML, based on a trace representa-
tion of game semantics which will be used to prove soundness and completeness of
Kripke open bisimulations and at the same time to shed light on the intuitions coming
from game semantics that have been used to define Kripke open bisimulations. Rather
than working with the fully abstract game model of RefML defined by Murawski and
Tzevelekos [9], it appears to be more convenient to work with a typed variant [4] of the
trace model introduced by Laird [6]. This is because trace semantics, which provides
as well a fully-abstract model of RefML, has a strong operational flavor, since it is
generated via an interactive reduction, representing exactly all the possible interactions
between terms and contexts.

6

Intern 〈(M, τ) :: S, γ, φ, h,D〉 −−−−−−→ 〈(M ′, τ) :: S, γ, φ, h′, D〉
(when (M,h) 7→nd (M ′, h′))

P-Ans 〈(u, τ) :: S, γ, φ, h,D〉
〈v̄〉,h′|D′−−−−−→ 〈S, γ′, φ′, h[h′], D′〉

P-Quest 〈(K[f u], σ) :: S, γ, φ, h,D〉
f̄〈v〉,h′|D′−−−−−−→ 〈(K[•τ ′], σ) :: S, γ′, φ′, h[h′], D′〉

(with φ(f) = τ → τ ′)
in all P-rules: (v, γv, φv) ∈ AValu(τ), D′ = discl(u, h,D),

(h′, γh, φh) ∈ AHeapD′(h
′), γ′ = γ · γv · γh, φ′ = φ · φv · φh

O-Ans 〈(K[•τ], σ) :: S, γ, φ, h,D〉
〈v〉,h′|D′−−−−−→ 〈(K[v], σ) :: S, γ, φ′, h[h′], D′〉

O-Quest 〈S, γ, φ, h,D〉
f〈v〉,h′|D′−−−−−−→ 〈(u v, σ) :: S, γ, φ′, h[h′], D′〉

(with γ(f) = u)
in all O-Rules: (v, φv) ∈ JτK, (h′, φh) ∈ JD′K, φ′ = φ · φv · φh, D′ = discl(v, h,D)

Fig. 3. Definition of the interaction reduction

3.1 Interactive reduction
The denotation of terms is defined as set of traces, whose basic blocks are actions a,
of four kinds (following game semantics terminology, actions of terms and contexts are
respectively called Player and Opponent actions):

– a question of Player (resp. Opponent) via a functional name f with argument an
abstract value v, represented by the action f̄ 〈v〉 (resp. f 〈v〉);

– an answer by Player (resp. Opponent) with the abstract value v, represented by the
action 〈v̄〉 (resp. 〈v〉).

A trace is then defined as a sequence of actions-with-heap (a, h), where a is an action
and h is a closed abstract heap. An important point is that h represents the disclosed
part of the heap, common to the term and the context.

Traces are generated using an interactive reduction. This reduction is defined on
“evaluation stacks” S, which are either

– passive, (Kn[•σn], τn) :: . . . :: (K1[•σ1
], τ1), formed by typed evaluations con-

texts, for Opponent configurations,
– or active, (M, θ) :: S ′ formed by a term M of type θ and a passive stack S ′, for

Player configurations.
The empty stack is simply written ♦. When Player provides a higher-order value to
Opponent, either via a callback (i.e., a question) or directly when reducing to a λ-
abstraction (i.e., an answer), it is stored in an environment γ, which is a partial maps
from FN to Val. Then Opponent can recover what is stored in γ, by asking a question.
We associate a type to every functional names using a typing function φ : FN ⇀
Types, such that dom(γ) ⊆ dom(φ). Functional names in dom(φ)\dom(γ) are the
one provided by Opponent, which can then be used by Player. To represent disclosure
of locations, we use a typing functionD : Loc ⇀ Types, that we often see as a relation,
which grows as the term or the context discloses new locations.

Definition 3. The disclosed locations coming from a value v and a heap h and already
disclosed locations in D is computed using the fonction discl(v, h,D), defined as a
typing function D′ such that (l, τ) ∈ D′ iff l ∈ h∗(νLoc(v,D)) and D′;φ ` h(l) : τ .

7

The interactive reduction is defined in Figure 3 as a bipartite LTS between Player and
Opponent configurations 〈S, γ, φ, h,D〉, where labels are actions-with-heap. The basic
idea is that if a term reduces:

– to a callback K[f u], the corresponding Player configuration performs a question
f̄ 〈v〉, reducing to an Opponent configuration withK on top of the evaluation stack,

– to a value u, the corresponding Player configuration performs an answers 〈v̄〉, re-
ducing to an Opponent configuration where the head of the evaluation stack has
been popped,

where v is an abstract values which, together with an environment γ′ mapping its func-
tional names to values, represents u. This γ′ is added to the player environment. An
opponent configuration can perform a question f 〈v〉 by interrogating a functional name
f in γ, or, if its evaluation stack is non-empty, it can perform an answer 〈v〉, filling the
hole of the first context of the stack.

The representation of a value u of type τ as a triple (v, φ, γ) formed by an abstract
value, and two functions mapping its fresh functional names to values and types, is
defined via the following set AValu(τ):

AValv(ι)
def
= {(v, ε, ε)} for ι = Unit,Bool, Int, ref τ

AVal〈u1,u2〉(τ1 × τ2)
def
= {(〈v1, v2〉 , γ1 · γ2, φ1 · φ2) | (vi, γi, φi) ∈ AValui(τi)}

AValu(τ → σ)
def
= {(f, [f 7→ u], [f 7→ (τ → σ)]) | f ∈ FN}

We also define a function AHeapD(h) to transform a heap h into a triple (h′, γ, φ)
formed by an abstract heap, and two functions mapping its fresh functional names to
values and types, defined, using the typing information on locations contains in D, as:

AHeapD(ε)
def
= {(ε, ε, ε)}

AHeapD(h · [l 7→ u])
def
= {(h′ · [l 7→ v], γ · γ′, φ · φ′) | (h′, γ′, φ′) ∈ AHeapD(h),

(v, γ, φ) ∈ AValu(τ) with (l, τ) ∈ D}
We write C a

=⇒ C ′ when, if C is a Player configuration then there exists a Player
configuration C ′′ such that C −→ C ′′

a−→ C ′, otherwise if C is an Opponent configura-
tion then C a−→ C ′. A trace T is generated by a configuration C when it can be written
as a sequence a1 · · · an of actions-with-heap s.t. C a1=⇒ C1

a2=⇒ . . .
an=⇒ Cn, in which

case we write C T
=⇒ Cn. The set of traces generated by C is written Tr(C). A trace

T ∈ Tr(C) is said to be complete if the number of answers occurring in the trace is
greater than its number of questions plus the length of the evaluation stack of C. They
can also be seen as the traces for which C reduce to a final Opponent configuration, that
is one with an empty stack. The set of complete traces of a configuration C is written
comp(Tr(C)). To define the denotation associated to an open term M , an extra action
? 〈v〉, the initial Opponent question, is added to fix the choice of abstract values for the
free variables of M .

Definition 4. The set of complete traces generated by M , written JΣ;Γ `M : τK, is⋃
comp({? 〈codom(ρ)〉 · Tr(〈(ρ(M), τ), ε, φΓ · φΣ , h,Σ′〉 | (ρ, φΓ) ∈ JΓ K,

Σ′ ⊇ Σ, (h, φΣ) ∈ JΣ′K, νLoc(ρ) ⊆ dom(Σ′)}).
As proven by Laird in [6] for closed, and more generally for open terms in [4], we

get a full abstraction result:

Theorem 1. Σ;Γ `M1 'ctx M2 : τ ⇔ JΣ;Γ `M1 : τK = JΣ;Γ `M2 : τK.

8

3.2 Nominal equivalence of Traces

In the following, we decompose traces forming the denotation of terms, thus loosing the
initial Opponent question which fixes the choice of names. To overtake this problem,
we reason up to nominal equivalence of traces, with permutations which fix these names
via two spans Φ and D on Loc and FN. We write T 'DΦ T ′ if T = a1 · . . . · an, T ′ =

a′1 · . . . · a′n and there exist two spans Φ′ w Φ and D′ w D such that for all i, ai ∼D
′

Φ′ a
′
i.

We then apply such nominal reasoning on compatible configurations

Definition 5. Two configurations C1, C2 are compatible for Φ,D when, writing Ci as
〈Si, γi, φi, hi, Di〉, we have Φi = φi, Di = Di, there exists a subspan ΦP v Φ
such that dom(γi) = Φi, and writing ni for the evaluation stack Si, for all j ∈
{1, . . . ,min(n1, n2)}, the j-th elements of S1 and S2 are of the same type, and n1 = 0
iff n2 = 0 (i.e., C1 is a final configuration iff C2 is).

Taking two compatible configurations C1, C2 for Φ,D, we write C1 'DΦ C2 when for
all T1 ∈ comp(Tr(C1)), there exists T2 ∈ comp(Tr(C2)) such that T1 'DΦ T2, and
for all T2 ∈ comp(Tr(C2)), there exists T1 ∈ comp(Tr(C1)) such that T1 'DΦ T2.

Theorem 2. Suppose that Σ;Γ ` M1,M2 : τ , then Σ;Γ ` M1 'ctx M2 : τ if
and only if for all (ρ, φΓ) ∈ JΓ K, Σ′ ⊃ Σ and (h, φΣ) ∈ JΣ′K closed s.t. νLoc(ρ) ⊆
dom(Σ′), we haveC1 'Σ̂

′

φ̂
C2, whereCi = 〈(ρ(Mi), τ), ε, φ, h,Σ′〉 with φ = φΓ ·φΣ .

3.3 A simple bisimulation on traces

One can see the LTS that generates traces as a (possibly infinite) automaton, where the
final states correspond to opponent configurations with an empty evaluation stack. Then,
bisimulations on this automaton can be defined in a standard way in order to capture
the equality of the two languages recognized from two states (i.e. two configurations).

Using the fact that the LTS is bipartite, deterministic, and that a Player configura-
tion can generate at most one action (up to nominal equivalence), we introduce a notion
of bisimilation on traces as a family of pairs of relations (PΦ,D,OΦ,D) on compatible
Player and Opponent configurations for Φ and D two spans respectively on functional
names and locations, whose mutual coinductive definitions is given in Figure 4. Its def-
inition is somehow complicated by the fact that the LTS is not complete, since for any
configuration there exists some action a such that C does not produce a. This is par-
ticularly the case of diverging Player configurations, which simply do not produce any
actions. We cannot complete the LTS by adding a unique “garbage state”, since this state
would not be compatible with the other diverging states. So for an Opponent (non-final)
configuration C and two spans Φ,D, we consider the associated diverging compatible
state C i

Φ,D defined as 〈S i, γ i, Φi, h,Di〉, where we write S i for the evaluation stack
(λ_.⊥τ)•σ, τ) such that the top element of the evaluation stack of C is of type σ τ
and γ 1 is defined as {(f, λ_ : σ.⊥σ′) | ∃f ′ ∈ dom(C.γ).(f ′, f, σ → σ′) ∈ Φ} (the
symmetric definitions applies for i = 2).

This notion of bisimulation captures equality of complete traces in the following
sense (the proof can be found in Appendix B).

Theorem 3. Taking C1, C2 be two configurations of polarity X ∈ {O,P}, we have
C1 'DΦ C2 iff (C1, C2) ∈ XΦ,D.

9

OΦ,D
def
=
{

(C1, C2) | ∀Φ′ w Φ,∀D′ w D∀a1 ∼D
′

Φ′ a2.∃(C ′1, C ′2) ∈ PΦ′,D′ .(
(C1

a1=⇒ C ′1)⇔ (C2
a1=⇒ C ′2)

)}
PΦ,D

def
= {(C1, C2) | (∀i ∈ {1, 2}.Ci ∈ P i) ∨ (∃Φ′ w Φ.∃D′ w D.

∃(C ′1, C ′2) ∈ OΦ′,D′ .∃a1 ∼D
′

Φ′ a2.(∀i ∈ {1, 2}.Ci
ai=⇒ C ′i)}

P i def
= {C | C ⇑ ∨∃C ′ ∈ O i.∃a.C a

=⇒ C ′}
O 1 def

= {C | ∃Φ,D.Φ1 = C.φ ∧ D1 = C.D ∧ (C,C 1
Φ,D) ∈ OΦ,D}

O 2 def
= {C | ∃Φ,D.Φ2 = C.φ ∧ D2 = C.D ∧ (C 2

Φ,D, C) ∈ OΦ,D}

Fig. 4. Bisimulations on traces

4 Kripke Open Bisimulations

Bisimulations on traces can be somehow difficult to use as the LTS they are defined
on is in most cases infinite. Indeed, Opponent has always the possibility to question a
function f in γ as many times as he wants. The interaction generated by this question
depends on both the value and the heap provided by Opponent. It is possible to charac-
terizes them by knowing what are the disclosed locations (living in D) and the private
part of the heap (hD), at any point after the introduction of f . To do so, we use a notion
of world w, formed by such invariants on private heaps and a span on disclosed loca-
tions, and a transition system A describing how these worlds evolve. One can check
the equivalence of two functional values disclosed by Player by checking their equiv-
alence for any “future” world. This is the basic reasoning principle of Kripke Open
Bisimulations, which is in fact taken from Kripke Logical Relations.

4.1 Transition Systems and Worlds

As in the work on RTS, we choose to work with “small” worlds, which only states
local invariants relevant to the terms we reason on, but nothing about the invariants
of the global contexts. But compared to the worlds used in RTS, we choose to do not
incorporate the transition system inside the definition of worlds, but to use instead an
external definition of transition system which dictates the evolution of worlds. Doing
so, we can see transitions as pairs of pre- and post-conditions on heaps. We call them
World Transition Systems (WTS, defined in Figure 5), since they are simply transition
functions between worlds. Worlds w are tuples formed by a state s from an abstract
set State, two heaps (describing the private part of the heap) h1, h2, a typed span on
locations D and a boolean indicating if the world is inconsistent or not. We suppose
that for i ∈ {1, 2},dom(hi) ∩ Di = ∅. In practice, State can simply be taken as
natural numbers. For a world w = (s, h1, h2,D, b) we define the predicates cons(w)
and incons(w) respectively as b = false and b = true. WTS are formed by a pair
(δ, δpub) respectively for private and public transitions, which are simply relations be-
tween worlds. Since worlds do not fully specify the disclosed part of heaps, there can
be some branching on the values stored inside, which explains the non-deterministic
representation of transitions, rather than just using a partial function. Private transitions

10

represent transitions that only terms can take, while public ones can be taken by both
terms and contexts. This explains the condition δpub ⊆ δ∗priv. Moreover, private tran-
sitions cannot transform an inconsistent world into a consistent one .

Worlds specify heaps precisely, since there is no freedom on the private part of the
heap, while on the public part, the span is used to induce a nominal equivalence. But
depending on whether the disclosed part is an abstract heap or a usual heap, we use two
different predicates, defined in Figure 5:

– PΦ(w), which characterizes tuples (h1, h2,D, Φ′) of heaps together with a span on
disclosed locations and a span on functional names Φ′ that extends Φ, and which is
used to collect the functional names used as abstract values on the hi|Di

– QΦ(w), which characterizes tuples (h1, h2,D), where the hi|Di can contain λ-
abstraction on which VA JτKΦ w, introduced in the next section, is used to reason
about (via a mutual definition).

Transitions of a WTS A are used to define private and public notions of future worlds.

Definition 6. Let A be a WTS and w1, w2 two worlds. We say that w2 is a future (w.r.t.
A) of w1, written w2 w w1 if either w1 = w2 or δpriv(w1, w2). Note that strictly
speaking,w depends onA but it is not explicit in the notation asA is always clear from
context. Public futures (noted with wpub) are defined similarly using δpub.

Because contexts may create fresh disclosed locations during execution, we also
introduce a notion of freshened extensionF(w) of a worldw which forces the existence
of a state creating an arbitrary number of fresh disclosed locations. F(w) is defined as
{(s, h1, h2,D) | s = w.s, h1 = w.h1, h2 = w.h2,∃D′.D = D′] w.D}. We then
write w′ wF w (resp. w′ wFpub w) when there exists w′′ such that w′′ w w (resp.
w′′ wpub w) and w′ ∈ F(w′′). We write wF∗ and wF∗pub respectively for the transitive
closure of wF and wFpub.

4.2 Definition of KOBs

This section introduces Kripke open bisimulations. For space limitation, we have illus-
trated in Appendix F,on well-known examples of the literature, how to use direct-style
reasoning, spans of names, WTSs and reasoning about divergence—which constitute
the main concepts of KOBs.

Kripke open bisimulations, defined via a mutual coinduction in Figure 5, are a fam-
ily of relations on values (VA JτKΦ w), evaluation contexts5 (KA Jτ, σKΦ w) and terms
(EA JτKΦ w), that represents a particular kind of bisimulation, indexed by a world w of
the WTS A and by a span on functional names Φ.

Compared to the bisimulations on traces, here we do not reason anymore on config-
urations, but simply on terms. The bisimulation on Player configurations corresponds
to EA JτK , while the bisimulation on Opponent configurations corresponds to VA JτK w
for the questions, and KA Jσ, τK for the answers.

Forgetting a moment about the necessary predicative reasoning principle for diverg-
ing terms, Kripke open bisimulations mainly guarantee that, once reducing two terms

5 Even if we use a relation KA Jσ, τK on evaluation contexts, our definition does not make any
use of biorthogonality.

11

World
def
= State×Heap2 × SpanLoc × Bool

WTS
def
= {(δpriv, δpub) | δpriv, δpub ⊆ P(World×World), δpub ⊆ δ∗priv,

∀(w,w′) ∈ δpriv.cons(w′)⇒ cons(w)}

PΦ(w)
def
=
{

(h1, h2,D, Φ′) | ∃Φ′′.∃hd1, hd2.Φ′ = Φ · Φ′′ ∧ hd1 ∼DΦ′′ hd2 ∧ D = w.D
∧∀i ∈ {1, 2}.hi = w.hi · hdi ∧ hdi ∈ JDiK

}
QΦ(w)

def
=
{

(h1, h2,D) | ∀(l1, l2, τ) ∈ D.(h1(l1), h2(l2)) ∈ VA JτKΦ w
∧D = w.D ∧ ∀i ∈ {1, 2}.hi = w.hi · hdi ∧ dom(hdi) = Di

}
VA JιKΦ w

def
= {(v1, v2) | v1, v2 ∈ JιK, v1 ∼w.D v2}

VA Jτ1 × τ2KΦ w
def
= {(〈v1, v2〉 , 〈v′1, v′2〉) | ∀i ∈ {1, 2}.(vi, v′i) ∈ VA JτiKΦ w}

VA Jτ → σKΦ w
def
= {((u1, u2) | ∀w′ wF∗ w.∀Φ′#Φ.∀(v1, Φ

′
1), (v2, Φ

′
2) ∈ JτK.

v1 ∼Φ′,w′.D v2 ⇒ (u1 v1, u2 v2) ∈ EA JσKΦ·Φ′ (w′, w′)}
GA JΦP KΦ w

def
= {(γ1, γ2) | ∀(f1, f2, τ) ∈ ΦP .(γ1(f1), γ2(f2)) ∈ VA JτKΦ w}

KA Jτ, σKΦ (w,w0)
def
= {(K1,K2) | ∀w′ wF∗pub w.∀Φ′#Φ.∀(v1, Φ

′
1), (v2, Φ

′
2) ∈ JτK.

v1 ∼Φ′,w′.D v2 ⇒ (K1[v1],K2[v2]) ∈ EA JσKΦ·Φ′ (w′, w0)}

EA JτKΦ (w,w0)
def
=
{

(M1,M2) | ∀(h1, h2,D, Φ′) ∈ PΦ(w).(
∃M ′1,M ′2.∃w′ w w.∃(h′1, h′2,D′) ∈ QΦ′(w

′).

∀i ∈ {1, 2}.
(
(Mi, hi) 7→∗ (M ′i , h

′
i) ∧ irred(M ′i , h

′
i)
)

∧
((
∃(u1, u2) ∈ VA JτKΦ′ w′ ∧ w′ w∗pub w0 ∧ ∀i ∈ {1, 2}.M ′i = ui ∧ discl(ui, h

′
i,Di) ⊆ D′i

)
∨
(
∃(f1, f2, σ → σ′) ∈ Φ′.∃(u1, u2) ∈ VA JσKΦ′ w′.∃(K1,K2) ∈ KA Jσ′, τKΦ′ (w′, w0)

∀i ∈ {1, 2}.M ′i = Ki[fi ui]discl(ui, h
′
i,Di) ⊆ D′i

)))
∨
(
∀i ∈ {1, 2}.(Mi, hi,Di) ∈ E iA JτKΦ′i (w,w0)

)}
E iA JτKφ (w,w0)

def
=
{

(M,h,D) | (M,h) ⇑ ∨
(
∃M ′.∃w′ w w.∃(h′, D′) ∈ Qi

φ(w′).

(M,h) 7→∗ (M ′, h′) ∧ irred(M ′, h′) ∧ incons(w′)∧((
∃u ∈ ViA JτKφ w′.M ′ = u ∧ discl(u, h′, D) ⊆ D′ ∧ w′ w∗pub w0

)
∨ (∃(f, σ → σ′) ∈ φ.

∃u ∈ ViA JσKφ w′.∃K ∈ KiA Jσ′, τKφ (w′, w0).M ′ = K[f u]) ∧ discl(u, h′, D′) ⊆ D′
))}

Σ;Γ `M1 'kob M2 : τ
def
= ∃A ∈WTS.∃s ∈ State.∀(ρ, φ) ∈ JΓ K.∀Σ′ ⊇ Σ.

νLoc(ρ) ⊆ dom(Σ′)⇒ (ρ(M1), ρ(M2)) ∈ EA JτKφ̂ (w0, w0)

where w0 = (s, ε, ε, Σ̂′, false). and for all w w∗pub w0.cons(w)

Fig. 5. Definition of Kripke Open Bisimulations for RefML.

12

with heaps satisfying the invariants of the current world w, they either diverge, or there
exists a future world w′ of w such that the heaps produced by the reduction satisfy its
invariants, and if the resulting terms are values, they are related, otherwise the resulting
terms are callbacks which are synchronized, with the evaluation contexts surrounding
them being related. The span on functional names Φ is used to keep track of functional
names given by the context to the terms. Indeed, compared to logical relations, when
τ is of functional type, the definition of VA Jτ → σKΦ w does not quantify over related
values v1, v2 of type τ , but uses instead fresh functional names f1, f2, remembering in
Φ that they are related.

The definition of EA JτKΦ (w,w0) is indexed by an extra world w0, corresponding
to the initial world where the reduction of the two terms has been considered, and
which is thus freshened in the definition of VA Jτ → σKΦ w. We enforce the existence
of a public transition between a future world w′ of w, and w0 when terms have been
reduced to values (but not callbacks). This corresponds to a well-bracketed behavior,
where the question, which happens in the world w0, is answered in the world w′.

Finally, the “full” KOBΣ;Γf , Γg `M1 'kob M2 : τ is defined for terms with open
ground variables, that must be substituted by ground values. All the futures worlds of
the initial world w0 used in its definition must be consistent. The main difference with
Kripke logical relations is that there is an existential quantification over the WTS A
which fixes the possible futures instead of a universal over all possible world extensions.

Predicative Reasoning. When considering diverging terms, synchronization of call-
backs is no longer valid, since the two terms can diverge at different time during the
execution. This is taken into account by a predicative reasoning involving:

– Qi
φ(w) defined as {(h,D) | h = (w.hi) · hd ∧ D = (w.D)i ∧ dom(hd) = D ∧
∀(l, τ) ∈ D,h(l) ∈ ViA JτKφ w}

– V1
A JιKΦ w, defined as the set of closed values of type ι, for ι a ground type,

– V1
A Jτ → σKΦ w, defined as the set of values
{v | ∃Φ ∈ SpanFN.Φ1 = φ ∧ (v, λx.⊥σ) ∈ VA Jτ → σKΦ w},

– K1
A Jτ, σKφ (w,w0), defined as the set of contexts
{K | ∃Φ ∈ SpanFN.Φ1 = φ ∧ (K, (λ_.⊥σ)•) ∈ KA Jτ, σKΦ (w,w0)}

and V2
A JτKΦ w,K2

A Jτ, σKΦ (w,w0) defined in a symmetric way. Then, we use inconsis-
tent states to allow predicative reasoning, however this is not allowed in a public future
of the initial world used in the definition Σ;Γf , Γg `M1 'kob M2 : τ , to avoid having
unrelated “final” answers. This condition is also present in the definition of KLR [2].

4.3 An Example: Well-Bracketed State Change

We now see how KOBs work, using the WTS in Figure 6. on the “well-bracketed state
change” example:

M1 = let x = ref 0 in λf.x := 0; f(); x := 1; f(); !x

M2 = λf.f(); f(); 1

The transitions from the left to the middle state and from the middle to the right
state are public, so that both the term and contexts can take it. The other one is only
private to the term. Then, to prove the equivalence, we begin in the left state, and we

13

w′.h1 = [lx ↪→ 0] w′.h1 = [lx ↪→ 1]

w′.h1 = [lx ↪→ 0]

Fig. 6. WTS for the well-bracketed state change example.

reduce (M1, ε) to (v1, h1) = (λf.lx := 0; f(); lx := 1; f(); !lx , [lx 7→ 0]). Then, to
prove the equivalence of v1 and M2, we must reason about all the future state of the
middle one. This correspond to the fact that such λ-abstractions can be called at any
point of the execution by the context, via nested calls.

Suppose we are in the right state. Then we know that lx ↪→ 1 and to prove that the
two λ-abstractions are equivalent in this state, we directly reason on the corresponding
open terms where the bindings of f have been removed. We reduce them, and since lx
is set to 0, we go back to the middle state, which is (privately) accessible. They both
perform the same callback with the same value (), so so far they are related. Then, we
must prove that the two contexts •; lx := 1; f(); !lx and •; f(); 1 are related. To do
so, we can go to any state publicly accessible from the current one. That is, we can
be in the middle or right state as both are publicly accessible. Moreover, the contexts
we consider have a hole of type Unit, so we just have to prove that the two terms
(); lx := 1; f(); !lx and (); f(); 1 are related. Reducing them, the callbacks are again
related, and we must find a state where the post-condition lx 7→ 1 is valid, i.e., we move
to the right state. Finally, we travel to any public future state from this one, so we stay
in the same place, to prove that the contexts •; !lx and •; 1 are equivalent, which is
straightforward since we know that lx points to 1. The reasoning for the state where
lx ↪→ 0 is similar. We see that the proof is done via a simple reasoning on the transition
system, reducing the terms step by step. We have not simplified it in any way.

5 Soundness

We now prove a correspondence between bisimulations on traces and KOBs (the com-
plete proofs are given in Appendix D).To do so, since KOBs are defined using the usual
operational semantics, we need a lemma to validate the transformation of values into
abstract values and functional environments defined via AValu(τ)

Lemma 1. Let us consider (u1, u2) ∈ VA JτKΦO w. Taking (v1, φ1, γ1) ∈ AValu1(τ)
and (v2, φ2, γ2) ∈ AValu2

(τ) such that dom(φi) ∩ dom(ΦO,i) = ∅, there exists a
span ΦP satisfying ΦP,i = φi such that v1 ∼w.DΦP v2 and (γ1, γ2) ∈ GA JΦP KΦO w.

To relate the evaluation stacks of the two considered configurations, it is necessary
to relate their j-th elements at world wj corresponding to the invariant when these
evaluation stacks have been pushed.

Theorem 4. Let n ∈ N and n+ 2 world wn+1 wF∗ wn wF∗ . . . wF∗ w0 such that
– ∀w′ w∗pub w0.cons(w

′),

14

– (M1,M2) ∈ EA JτKΦO (wn+1, wn),
– for all j ∈ {1, . . . , n}, (Kj

1 ,K
j
2) ∈ KA Jσj , τjKΦO (wn+1, wj−1),

– (γ1, γ2) ∈ GA JΦP KΦO wn+1.
Then for all (h1, h2,D, Φ′) ∈ PΦP ·ΦO (wn+1), writing Si for (Kn

i [•σn], τn) :: . . . ::
(K1

i [•σ1
], τ1), (〈(M1, τ) :: S1, γ1, Φ

′
1, h1,D1〉, 〈(M2, τ) :: S2, γ2, Φ

′
2, h2,D2〉) ∈ PΦ′,D.

From Theorems 2, 3 and 4, we get the wanted result.

Corollary 1. Suppose that Σ;Γ `M1 'kob M2 : τ , then Σ;Γ `M1 'ctx M2 : τ .

6 Completeness
As opposed to KLR, completeness of KOBs can no longer be proven “for free” using
biorthogonality. The proof needs to be more constructive and relies crucially on the con-
nection to the fully-abstract trace semantics introduced in Section 3. However, it is not
possible to use directly bisimulations on traces as they do not enforce the existence of a
WTSA and a world w validating the equivalence. We introduce instead a variant notion
of bisimulation on traces—faithful Kripke bisimulation on traces—whose definition is
indexed by a WTS A and a list of world L, and which satisfies the property that being
related for these new bisimulations implies being related for KOBs. We conclude by
constructing an exhaustive WTS associated to a pair of configurations in the bisimula-
tion on traces, which shows that two equivalent programs produce traces that are related
by a faithful Kripke bisimulation (the complete proofs are given in Appendix E).

6.1 Faithful Kripke Bisimulations on Traces

To prove completeness of KOBs, we introduce an intermediate notion—between bisim-
ulations on traces and KOBs: faithful Kripke bisimulations on traces, defined in Figure
7. They are pairs of relations (PA(Φ,L),OA(Φ,L)) on partial configurations, that is
pairs formed by an evaluation stack and a functional environment, whose definitions
is indexed by a span Φ on functional names and by stack of worlds, of size those of
the evaluation stacks plus two, L = wn :: . . . :: w1 such that wn wF∗ . . . wF∗ w1.
Restriction to partial configurations is harmless since we can always complete them
using the span Φ and the top element of L. Faithful Kripke bisimulations on traces
are used to enforce two main properties on a WTS A: (i) the existence of accessible
worlds validating the possible heaps obtained from reachable configurations, (ii) from
(C1, C2) ∈ OΦ,w and w′ w∗ w, the existence of equivalent execution of C1, C2 to
configurations which satisfies the invariants of w′. Their definition can be seen as a
mix between the bisimulations on traces introduced in Section 3.3, since they are de-
fined on (partial) configurations and use interactive reduction, and the KOBs, since
they use worlds and WTS to deduce and enforce invariants on heaps. However, there is
a crucial distinction in the use of the WTS, that is the enforcement of faithfulness via
the two predicates FaitfulΦ(L),Faitfulpub,Φ(L) respectively on private and public
transitions. Indeed, these predicates enforce that all the transition of the WTS can be
taken by some reduction of the LTS generating the traces (notice that Faitfulpub,Φ(L)
enforces a stronger condition that this reduction should not change the stack of the con-
figurations). These properties are not enforce by the KOBs, and it is indeed possible to

15

OA(Φ,L)
def
=
{

(〈S1, γ1〉 , 〈S2, γ2〉) | ∀(h1, h2,D, Φ′) ∈ PΦ(w),∀Φ′′ w Φ,
∀w′ ∈ F(w),∀a1, a2.a1 ∼w

′.D
Φ′′ a2 ⇒ ∃S ′1,S ′2.(〈S ′1, γ1〉 , 〈S ′2, γ2〉) ∈ PA(Φ′, L′)

∧
(
(C1

a1=⇒ 〈S ′1, γ1, Φ
′′
1 , h
′
1,D′1〉)⇔ (C2

a2=⇒ 〈S ′2, γ2, Φ
′′
2 , h
′
2,D′2〉)

)
∧(〈S1, γ1〉 , 〈S2, γ2〉) ∈ (FaitfulΦ(L) ∩ Faitfulpub,Φ(L))

}
PA(Φ,L)

def
=
{

(〈S1, γ1〉 , 〈S2, γ2〉) | ∀(h1, h2,D, Φ′) ∈ PΦ(w).(∀i ∈ {1, 2}.Ci ∈P
 i
A (Φ′i, L))

∨
(
∃w′ w w. ∃(h′1, h′2,D′, Φ′′) ∈ PΦ′′(w

′).∃(〈S ′1, γ′1〉 , 〈S ′2, γ′2〉) ∈OA(Φ′′, L′).

∃(a1 ∼D
′

Φ′′ a2).∀i ∈ {1, 2}.
(
Ci

ai=⇒ 〈S ′i, γ′i, φ′′i , h′i, D′i〉
)
∧ (a1, a2 answer⇒ w′ wpub w))

}
where (in both definitions) Ci = 〈Si, γi, Φ′i, hi,Di〉, L = w :: L′′

L′ = w′ :: L if both ai are questions, otherwise L′ = w′ :: L′′

P
 i
A (φ,L))

def
= {C | C ↑ ∨∃w′ w w.∃(h′, D′, φ′) ∈ Piφ(w′).∃ 〈S ′, γ′〉 ∈O

 i
A (φ′, L′).

∃a.(C a
=⇒ 〈S ′, γ′, φ′, h′, D′〉) ∧ incons(w′) ∧ (a answer⇒ w′ wpub w)}

where L = w :: L′′ and L′ = w′ :: L if both ai are questions, otherwise L′ = w′ :: L′′

O
 1

A (φ,L)
def
= {〈S, γ〉 | ∃Φ.Φ1 = φ ∧ (〈S, γ〉 ,

〈
S i, γ i

〉
) ∈OA(Φ,L)}

FaitfulΦ(w :: L)
def
= {(〈S1, γ1〉 , 〈S2, γ2〉) | ∀w′ wF∗ w.∀(h′1, h′2,D′, Φ′′) ∈ PΦ(w′),

∃(h1, h2,D, Φ′) ∈ PΦ(w),∃T1, T2.∃(〈S ′1, γ′1〉 , 〈S ′2, γ′2〉) ∈OA(Φ′′, (w′ :: L′)).

〈Si, γi, Φ′i, hi,Di〉
Ti=⇒ 〈S ′i, γ′i, Φ′′i , h′i,D′i〉}

Faitfulpub,Φ(w :: L)
def
= {(〈S1, γ1〉 , 〈S2, γ2〉) | ∀w′ wF∗pub w.∀(h′1, h′2,D′, Φ′′) ∈ PΦ(w′),

∃(h1, h2,D, Φ′) ∈ PΦ(w),∃T1, T2.∃γ′1, γ′2.(〈S1, γ
′
1〉 , 〈S2, γ

′
2〉) ∈OA(Φ′′, (w′ :: L))∧

〈Si, γi, Φ′i, hi,Di〉
Ti=⇒ 〈Si, γ′i, Φ′′i , h′i,D′i〉}

Fig. 7. Faithful Kripke bisimulations

use them with some WTS where they are not true. Thanks to those properties, faithful
Kripke bisimulations on traces implies KOBs in the following sense.

Theorem 5. Let M1,M2 two terms, w and w0 two worlds, Φ = ΦP · ΦO a span on
functional names such that (w.D)i;ΦO,i ` Mi : τ , and γ1, γ2 two functional en-
vironments with dom(γi) = ΦP,i. If (〈M1, γ1〉 , 〈M2, γ2〉) ∈ PA(Φ, (w,w0)), then
(M1,M2) ∈ EA JτKΦO (w,w0).

6.2 Exhaustive WTS

It remains to construct the exhaustive relational WTS, which can be seen as the merge
of two WTS coming from trace semantics. Its construction is obfuscated by nominal
reasoning and diverging terms and requires some basic operations on WTSs:

– Add a private transition r: A
priv
⊕ r

def
= (δpriv ∪ {r}, δpub)

– Add a public transition r: A
pub
⊕ r

def
= (δpriv, δpub ∪ {r})

– Union of two transition systems: A1 t A2
def
= (δ1,priv · δ2,priv, δ1,pub · δ2,pub).

The exhaustive WTS (for terms) SELΦ is defined by mutual coinduction with its corre-
sponding WTS (for contexts) SKL

Φ, where L is a list of worlds whose head corresponds

16

SEw::L
Φ (〈S1, γ1〉 , 〈S2, γ2〉)

def
=

⊔
(h1,h2,D,Φ′)∈PΦ(w)

(⊔
a1∼D

′
Φ′′a2

SKL′

Φ′(〈S ′1, γ′1〉 , 〈S ′2, γ′2〉)

priv
⊕ (w,w′)

pub
⊕ (w0, w

′)︸ ︷︷ ︸
only if ai’s are Player answers

)⊔ (⊔
i

SE i,w::L(Ci)
)

SE i,w::L(〈S, γ, φ, h,D〉) def=
⊔
a

SK i,L
φ′ (〈S ′, γ′〉)

priv
⊕ (w,w′)

pub
⊕ (w0, w

′)︸ ︷︷ ︸
only if a is a Player answer

)
SKw::L

Φ (〈S1, γ1〉 , 〈S2, γ2〉)
def
=

⊔
a1∼D

′
Φ′ a2

(
SEL

′

Φ′(〈S ′1, γ1〉 , 〈S ′2, γ2〉)
)

SK 1,L
φ (〈S, γ〉) def= SKL

Φ(〈S, γ〉 ,
〈
S , γ

〉
)

Fig. 8. The exhaustive relational WTS

to the current one, while its tail corresponds to the public transitions that must be added
once a value is reached in the interactive reduction. The definition is given in Figure 8.

The definition of SEw::L
Φ is done on Player evaluation stacks S1,S2. In the defini-

tion, writing Ci for 〈Si, γi, Φ′i, hi,Di〉, we have Ci
ai=⇒ 〈S ′i, γ′i, Φ′′i , h′i,D′i〉 and w′ is

equal to (s, h′
1|D′1

, h′
2|D′1

,D′′, w.b) with s a fresh state. L′ = w′ :: L′′ where, if the

ai are Player questions, then L′′ = L , otherwise, w0 :: L′′ = L. To deal with diver-
gence, we use the auxilliary definition SE i,w::L to consider actions a such that C a

=⇒
〈S ′, γ′, φ′1, h′1, D′1〉, In these case, w′ = (s, h′

1|D′1
, w.h2,D′, true) with D′ any span

s.t. D′i = D′i. L
′ = w′ :: L′′ such that, if a is a Player questions, then L = L′′, other-

wise, L = w0 :: L′. The definition of SKL
Φ is done on two Opponent evaluation stacks,

with Φ′ w Φ, w′ ∈ F(w) and both 〈Si, γi, Φ′i, hi, (w.D)i〉
ai=⇒ 〈S ′i, γ′i, Φ′′i , h′i, (w′.D)i〉.

L′ = w′ :: L′′ and, if the ai are Opponent questions, L′′ = w :: L, otherwise, L′′ = L.
Using the tree structure of the exhaustive WTS, we can prove the following theorem,

which, combined with Theorem 2,3,5, allows to conclude on completeness of KOBs.

Theorem 6. Let 〈S1, γ1〉 , 〈S2, γ2〉 be two Player reduced configurations such that both
S1,S2 have the same size n, Φ a spans on functional names, L a list of n worlds whose
top element is w, and (h1, h2,D, Φ) ∈ PΦ(w). Writing Ci for 〈Si, γi, Φi, hi,Di〉, if
(C1, C2) ∈ PΦ,D then (〈S1, γ1〉 〈S2, γ2〉) ∈PSELΦ(〈S1,γ1〉,〈S2,γ2〉)(Φ,L).

7 Future Work

Toward Automation of Proofs of Equivalence. The ultimate goal of this work is
to reason automatically on contextual equivalence. That is, given two terms M1,M2

and supposing that a WTS A is provided, we would like to prove automatically that
(M1,M2) ∈ EA JτKe w0. This is why we have removed quantification over “complex”
objects in the definition of KOBs. By introducing a symbolic execution for fragments
of the language (without higher-order references), one can automatically check whether
two terms of these fragmets are in EA JτKe w0. This can be seen as model-checking
equivalence of programs w.r.t. a WTS. Going further, we want to study fragments of

17

the language where some WTSA, being of course a lot more compact than the exhaus-
tive one, can be built automatically. Doing so, we should be able to decide equivalence
of programs. We have begun to implement these ideas, using an SMT-solver. It gives
promising results, being able to decide automatically the (in)-equivalence of many ex-
amples from the literature. It would then be interesting to compare such results from
the one from algorithmic game semantics [10].
Semantic Cube. One of the most impressive result of game semantics is the char-
acterization of various imperative features via constraint on strategies (e.g., first-order
references = visibility condition), coined the “semantic cube” by Abramsky. Following
this idea, Dreyer et al. [2] give a characterization of such imperative features via con-
straints on the shape of worlds and on the way we can reason about them. The restric-
tion to first-order references corresponds to the possibility to backtrack in the world.
In our framework, it should be possible to modify the definition of EA JτKe (w,w0) so
that future worlds of successive callbacks would be branching over w0 instead of be-
ing linearly related—branching corresponds to backtracking. Finally, adding a control
operator corresponds to removing the distinction between private and public transitions
(and inconsistent states), since the restriction to complete traces is not necessary, which
would lead to an interesting comparison with the work of Støvring and Lassen [15].

Compositionality. Because we use “small worlds”, so that the frame rule is not baked
in the definitions of KOBs, we cannot get compositionality results for free. It should
however be possible to prove it, by defining a product A1 ⊗ A2 of two LTSs, with
an associated weakening lemma on LTS stating that if (M1,M2) ∈ EA1

JτKΦ w1, then
(M1,M2) ∈ E(A1⊗A2) JτKΦ (w1 ⊗ w2). The crucial point is that we should only re-
quire discl(ui, h

′
i,Di) ⊆ D′i in the definition of EA JτKΦ w, instead of equality. This

should allow to prove the composition theorem: if (M1,M2) ∈ EA1 Jτ → σKΦ w1 and
(N1, N2) ∈ EA2

JτKΦ w2 then (M1 N1,M2 N2) ∈ E(A1⊗A2) JτKΦ (w1 ⊗ w2). Its proof
should follows quite closely the proof of compositionality for RTS [3].

Acknowledgments. The first author is supported by the Engineering and Physical Sci-
ences Research Council (EP/J019577/1).

References

1. A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence. In
Proceedings of POPL, 2009.

2. D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects on
local relational reasoning. Journal of Functional Programming, 22:477–528, 9 2012.

3. C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations and Kripke
logical relations. In Proceedings of POPL, volume 47, pages 59–72, 2012.

4. G. Jaber. Operational nominal game semantics. In Proceedings of FoSSaCS. Springer, 2015.
5. G. Jaber and N. Tabareau. Kripke open bisimulation, a marriage of game semantics

and operational techniques, 2015. Technical Appendix http://guilhem.jaber/
aplas2015-full.pdf.

6. J. Laird. A fully abstract trace semantics for general references. In Proceedings of ICALP,
pages 667–679. Springer, 2007.

18

http://guilhem.jaber/aplas2015-full.pdf
http://guilhem.jaber/aplas2015-full.pdf

7. S. Lassen and P. Levy. Typed normal form bisimulation. In Proceedings of CSL’07, pages
283–297. Springer, 2007.

8. S. Lassen and P. Levy. Typed normal form bisimulation for parametric polymorphism. In
Proceedings of LICS, pages 341–352. IEEE, 2008.

9. A. Murawski and N. Tzevelekos. Game semantics for good general references. In Proceed-
ings of LICS, pages 75–84. IEEE, 2011.

10. A. Murawski and N. Tzevelekos. Algorithmic games for full ground references. In Proceed-
ings of ICALP, pages 312–324, Berlin, Heidelberg, 2012. Springer-Verlag.

11. A. Pitts. Nominal logic, a first order theory of names and binding. Information and compu-
tation, 186(2):165–193, 2003.

12. A. Pitts and I. Stark. Operational reasoning for functions with local state. In Higher Order
Operational Techniques in Semantics. CUP, 1998.

13. D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order
languages. ACM Transactions on Programming Languages and Systems (TOPLAS), 2011.

14. I. Stark. Names, equations, relations: Practical ways to reason about new. Fundamenta
Informaticae, 33(4):369–396, 1998.

15. K. Støvring and S. Lassen. A complete, co-inductive syntactic theory of sequential control
and state. In Proceedings of POPL, pages 161–172. ACM, 2007.

16. E. Sumii. A complete characterization of observational equivalence in polymorphic λ-
calculus with general references. In Proceedings of CSL, pages 455–469. Springer, 2009.

19

A RefML

A.1 Syntax of RefML

τ, σ
def
= Unit | Bool | Int | ref τ | | τ × σ | τ → σ

u, u′
def
= () | true | false | n̂ | x | l | 〈u, u′〉 | λx.M (where n ∈ Z, x ∈ Var, l ∈ Loc)

M,M ′
def
= u |MM ′ |M +M ′ | if M then M ′ else M ′′ |M == M ′ |

ref M | !M |M := M ′ | | 〈M,M ′〉 | π1(M) | π2(M) | ⊥τ
C

def
= • | λx.C | CM |MC | ref C | C := M |M := C | !C | C +M |M + C |

if C then M else M ′ | if M then C else M ′ | if M then M ′ else C |
C == M |M == C | 〈C,M〉 | 〈M,C〉 | π1C | π2C

K
def
= • |KM | vK | ref K |K := M | v := K | !K |K +M | v +K |

if K then M else M ′ |K == M | v == K | 〈v,K〉 | 〈K, v〉 | π1K | π2K

A.2 Typing Rules

Σ;Γ ` () : Unit Σ;Γ ` true : Bool Σ;Γ ` false : Bool

Σ;Γ ` n̂ : Int Σ;Γ ` ⊥τ : τ

(x, τ) ∈ Γ
Σ;Γ ` x : τ

(l, τ) ∈ Σ
Σ;Γ ` l : ref τ

Σ;Γ `M : τ Σ;Γ ` N : σ

Σ;Γ ` 〈M,N〉 : τ × σ
Σ;Γ `M : τ1 × τ2
Σ;Γ ` πiM : τi

Σ;Γ, x : τ `M : σ

Σ;Γ ` λx.M : τ → σ

Σ;Γ `M : τ → σ Σ;Γ ` N : τ

Σ;Γ `MN : σ

Σ;Γ `M : τ

Σ;Γ ` ref M : ref τ

Σ;Γ `M : ref τ

Σ;Γ `!M : τ

Σ;Γ `M : ref τ Σ;Γ ` N : τ

Σ;Γ `M := N : Unit

Σ;Γ `M1 : Bool Σ;Γ `M2 : τ Σ;Γ `M2 : τ

Σ;Γ ` if M1 then M2 else M3 : τ

Σ;Γ `M1 : Int Σ;Γ `M2 : Int

Σ;Γ `M1 +M2 : Int

Σ;Γ `M1 : Int Σ;Γ `M2 : Int

Σ;Γ `M1 == M2 : Bool

Σ;Γ `M1 : ref τ Σ;Γ `M2 : ref τ

Σ;Γ `M1 == M2 : Bool

B Trace semantics

Lemma 2. Let us consider C1, C2 two Opponent configuration compatible for some
spans Φ,D, two actions a1, a2 such that there exists two spans Φ′ w Φ,D′ w D with

20

a1 ∼D
′

Φ′ a2. Then there exists two configurations C ′1, C
′
2 compatible for Φ′,D′ such that

C1
a1=⇒ C ′1 iff C2

a2=⇒ C ′2.

Proof: Suppose that there exists a configuration C ′1 such that C1
a1=⇒ C ′1 with C ′1 =

〈S ′1, γ1, Φ
′
1, h
′
1,D′1〉.

If a1 is an Opponent question (f1 〈v1〉 , h′1), then from the fact that C1, C2 are com-
patible, we get that there exists a functional name f2 such that (f1, f2, σ → σ′) ∈ Φ
and f2 ∈ γ2. One can decompose Φ′ into Φ · Φv · Φh such that (v1, Φv,1) ∈ JσK
and (h′1, Φh,1) ∈ JD′2K. Then, we consider any v2, h2 such that (v2, Φv,2) ∈ JσK
and (h2, Φh,2) ∈ JD′1K. Defining a2 as (f2 〈v2〉 , h′2), we get that C2

a1=⇒ C ′2 with
C ′2 = 〈S ′2, γ2, Φ

′
2, h
′
2,D′2〉, so that C ′1, C

′
2 are compatible for Φ′,D′.

The same reasoning applies for Opponent answers, and when there exists a config-
uration C ′2 such that C2

a2=⇒ C ′2. �

Lemma 3. TakingC = 〈S, γ, φ, h,D〉 an Opponent configuration, we have comp(Tr(C)) =
∅ iff C ∈ O i.

Proof: Suppose that comp(Tr(C)) = ∅. Let us consider any action a and Player
configuration C ′ such that C a

=⇒ C ′.We must prove that (C ′, C ′ 2) ∈ PΦ′,D′ . If
C ′ ↑, it is indeed the case. Otherwise, there exists an action a′ and an Opponent

configuration C ′′ such that C ′ a′
=⇒ C ′′. Then from comp(Tr(C)) = ∅ we get that

comp(Tr(C ′′)) = ∅, so we can apply the coinduction hypothesis to deduce that
C ′′ ∈ O i. Thus, (C ′, C ′ 2) ∈ PΦ′,D′ . The same reasoning applies to prove that
(C ′ 1, C ′) ∈ PΦ′,D′ .

Now, suppose that C ∈ O i, necessary C cannot be final so that ε /∈ Tr(C). Sup-
pose that there exists a trace (a · a′ · T) ∈ comp(Tr(C)). Then, there exists two

configurations C ′, C ′′ such that C a
=⇒ C ′

a′
=⇒ C ′′ and T ∈ comp(Tr(C ′′)). We get

that C ′′ ∈ O i, so the coinduction hypothesis gives us that comp(Tr(C ′′)), which is
absurd since T ∈ comp(Tr(C ′′)). �

Theorem 7. Taking C1, C2 be two configurations of polarity X ∈ {O,P}, we have
C1 'DΦ C2 iff (C1, C2) ∈ XΦ,D.

Proof:

From left to right Suppose that C1 'DΦ C2. Then if both Ci are Player configurations,
there is five possibilities:

1) Both Tr(Ci) are empty, in which case both Ci ↑, so that indeed (C1, C2) ∈ PΦ,D.
2) There exists two action a1, a2 and two configuration C ′1, C

′
2 such that both Ci

ai=⇒
C ′i. Then, up to nominal equivalence, comp(Tr(Ci)) ∼ ai · comp(Tr(C ′i)).
2a) If both comp(Tr(C ′i)) are non empty, from the initial hypothesis, we get the

existence of two spans Φ′ w Φ, D′ w D such that a1 ∼D
′

Φ′ a2 and C ′1 'D
′

Φ′ C
′
2,

so by the coinduction hypothesis (C ′1, C
′
2) ∈ OΦ′,D′ , and thus (C1, C2) ∈

PΦ,D.

21

2b) Otherwise, from the initial hypothesis both comp(Tr(C ′i)) are empty. From
Lemma 3, we get that both C ′i ∈ O i, so that (C1, C2) ∈ PΦ,D.

3) There exists an action a2 and a configuration C ′2 such that C2
a2=⇒ C ′2, and C1 ↑.

Then comp(Tr(C2)) ∼ a2 · comp(Tr(C ′2)) and from the initial hypothesis,
comp(Tr(C2)) is empty, so that comp(Tr(C ′2)) is also empty. From Lemma 3
C ′2 ∈ O 2. Thus (C1, C2) ∈ PΦ,D.

4) There exists an action a1 and a configuration C ′1 such that C1
a2=⇒ C ′1, and C2 ↑.

Then the same reasoning as in 3) applied to prove that (C1, C2) ∈ PΦ,D.

Otherwise, both Ci are Opponent configurations. Let Φ′ w Φ, D′ w D and two
actions a1, a2 such that a1 ∼D

′

Φ′ a2. From Lemma 2, there exists two Player con-
figuration C ′1, C

′
2 compatible with Φ′,D′ such that C1

a1=⇒ C ′1 iff C2
a2=⇒ C ′2. From

(ai · comp(Tr(C ′i))) ⊆ comp(Tr(Ci)), the fact that the LTS is deterministic, and
C1 'DΦ C2, we get that C ′1 'D

′

Φ′ C
′
2. Applying the induction hypothesis, we get that

(C ′1, C
′
2) ∈ PΦ′,D′ , so that (C1, C2) ∈ OΦ,D.

From right to left Suppose that (C1, C2) ∈ XΦ,D. Let us first suppose that both are
Player configuration (i.e. X = P). There exists two actions a1, a2 and two configura-
tions C ′1, C

′
2 s.t.:

– both Ci
ai=⇒ C ′i and there exists Φ′ w Φ and D′ w D such that a1 ∼D

′

Φ′ a2 and
(C ′1, C

′
2) ∈ OΦ′,D′ . Then the coinduction hypothesis gives us that C ′1 'D

′

Φ′ C
′
2.

Since all the actions performed by Ci are nominally equivalent, this gives us that
C1 'DΦ C2.

– Or both Ci ↑, in which case both comp(Tr(Ci)) = ∅.
– Or both Ci

ai−→ C ′i and both C ′i ∈ O i, and the coinduction hypothesis gives us
that both comp(Tr(Ci)) = ∅,

– or C1
a1−→ C ′1, C2 ↑, and C ′1,∈ O 1 so that comp(Tr(C2)) = ∅, and Lemma 3

coinduction hypothesis gives us that comp(Tr(C1)) = ∅
– or C2

a2−→ C ′2, C1 ↑, and C ′2 ∈ O 2 so that comp(Tr(C1)) = ∅, and Lemma 3
gives us that comp(Tr(C2)) = ∅.
Otherwise, bothC1, C2 are Opponent configurations. Suppose first that comp(Tr(C1))

is empty, and suppose there exists T2 ∈ comp(Tr(C2)). If T2 is the empty trace
ε, then C2 is a final configuration, so since C1, C2 are compatible, C1 is also a fi-
nal configuration, which is absurd because otherwise the empty trace would also be
in comp(Tr(C1)). Then there exists an action a2 and a configuration C ′2 such that

C2
C−→
′
2, T2 = a2 · T ′2 with T ′2 ∈ comp(Tr(C ′2)). But then, there exists two spans

Φ′ w Φ and D′ w D and an action a1 such that a1 ∼D
′

Φ′ a2. From (C1, C2) ∈
OΦ,D, we get the existence of C ′1 such that (C ′1, C

′
2) ∈ PΦ′,D′ and C1

a1−→ C ′1. But
from comp(Tr(C ′1)) = ∅ and (C ′1, C

′
2) ∈ PΦ′,D′ , we get from the coinduction hy-

pothesis that comp(Tr(C ′2)) = ∅, which is absurd since T ′2 ∈ comp(Tr(C ′2)). So
comp(Tr(C2)) is empty.

Otherwise, let us take a trace T1 ∈ comp(Tr(C1)), one must build T2 ∈ comp(Tr(C2))
such that T1 'DΦ T2. If T1 is the empty trace, this is straightforward since C1 is thus
a final configuration, so does C2 since C1, C2 are compatible. Otherwise there ex-
ists an opponent action a1 and a Player configuration C ′1 such that C1

a1−→ C ′1 and

22

T1 = a1 · T ′1. Then, there exists of an action a2 and two spans Φ′ w Φ and D′ w D
such that a1 ∼D

′

Φ′ a2. From (C1, C2) ∈ OΦ,D, we get the existence of C ′2 such that
(C ′1, C

′
2) ∈ PΦ′,D′ and C2

a2−→ C ′2. Then, the coinduction hypothesis gives us that
C ′1 'D

′

Φ′ C
′
2 so that there exists a trace T ′2 ∈ comp(Tr(C ′2)) such that T ′1 'D

′

Φ′ T
′
2. Fi-

nally, writing T2 for the trace a2 · T2, we get that T1 'DΦ T2 and T2 ∈ comp(Tr(C1)),
which is what we wanted to prove. Conversely, taking a trace T2 ∈ comp(Tr(C2)),
one can build in the same way a trace T1 ∈ comp(Tr(C1)) such that T1 'DΦ T2.
�

C Basic Properties on Kripke Open Bisimulations

We first state monotonicity properties of KOB.

Lemma 4. Taking (γ1, γ2) ∈ GA JΦP KΦ w with Φ′ w Φ satisfying Φ′#ΦP andw′ wF∗
w, we get that (γ1, γ2) ∈ GA JΦP KΦ′ w′.

Lemma 5. Taking (K1,K2) ∈ KA Jτ, σKΦ (w,w0) with Φ′ w Φ and w′ wF∗ w, we
get that (K1,K2) ∈ KA Jτ, σKΦ′ (w′, w0).

Lemma 6. Taking (M1,M2) ∈ EA JτKΦ (w,w0) with Φ′ w Φ, we get that (M1,M2) ∈
EA JτKΦ′ (w,w0).

Proof: The three lemmas are proven by a mutual coinduction.

Functional environments Let (f1, f2, σ → σ′) ∈ ΦP with γi(fi) = ui, we must
prove that (u1, u2) ∈ VA Jσ → σ′KΦ′ w

′. From (u1, u2) ∈ VA Jσ → σ′KΦ w, we get
that for all Φ′′#Φ′ and (v1, Φ

′′
1), (v2, Φ

′′
2) ∈ JτK with v1 ∼Φ′′,w′.D v2, (u1 v1, u2 v2) ∈

EA JσKΦ·Φ′′ (w′, w′). But from the coinduction hypothesis on Terms, we get that (u1 v1, u2 v2) ∈
EA JσKΦ·Φ′′ (w′, w′).

Contexts The same proof applies as for functional environments.

Terms Let (h1, h2,D, Φ′′) ∈ PΦ′(w), then writing Φ̃ forΦ′\Φ, we get that (h1, h2,D, Φ′′\Φ̃) ∈
PΦ(w). From (M1,M2) ∈ EA JτKΦ (w,w0), we get the existence of M1,M2, w′ w w
and (h′1, h

′
2,D′) ∈ QΦ′′\Φ̃(w′). such that both (Mi, hi) 7→∗ (M ′i , h

′
i). But we have

(h′1, h
′
2,D′) ∈ QΦ′′(w

′) from the coinduction hypothesis on values, and we conclude
the proof using the coinduction hypothesis on values and contexts.
�

Then, we prove a property of the predicative reasoning of KOB.

Lemma 7. Taking M a term, w a world such that for all (h1, h2,D, Φ′) ∈ PΦ(w), we
have (M,h1,D1) ∈ E1

A JτKΦ′1 (w,w0) (resp. (M,h2,D2) ∈ E2
A JτKΦ2

(w,w0)), then
we get that (M,⊥τ) ∈ EA JτKΦ (w,w0) (resp. (⊥τ ,M) ∈ EA JτKΦ (w,w0)).

23

Proof: Let us prove that (M,⊥τ) ∈ EA JτKΦ (w,w0). Taking (h1, h2,D, Φ′) ∈ PΦ(w),
since (⊥τ , h2) ⇑, one must prove that (M,h1,D1) ∈ E1

A JτKΦ′1 (w,w0) which is ex-
actly the hypothesis of the lemma.

The same reasoning applies to prove that (⊥τ ,M) ∈ EA JτKΦ (w,w0). �

Finally, we prove properties of KOB at inconsistent states.

Lemma 8. Taking (v1, v2) ∈ VA JτKΦ w with incons(w), we get that both vi ∈
ViA JτKΦi w.

Lemma 9. Taking (K1,K2) ∈ KA Jσ, τKΦ (w,w0) with incons(w), we get that both
Ki ∈ KA Ji, σKτ Φi(w,w0).

Lemma 10. Taking (M1,M2) ∈ EA JτKΦ (w,w0) with incons(w), we get that for all
(h1, h2,D, Φ′) ∈ PΦ(w), both (Mi, hi,Di) ∈ E iA JτKΦ′i (w,w0).

Proof:

Values If τ is a ground type, then it is straightforward that vi ∈ ViA JτKΦi w.
Suppose that τ = σ → σ′. Then taking w′ wF∗ w, and (u1, φ1), (u2, φ2) ∈ JσK

such that there existsΦ′ withΦ′i = φ′i,Φ
′#Φ and u1 ∼w

′.D
Φ′ , we get that (v1 u1, v2 u2) ∈

EA Jσ′KΦ·Φ′ w′.
Then, the coinduction hypothesis on terms gives us that for all (h1, h2,D, Φ′) ∈

PΦ(w), both (vi ui, hi,Di, Φ′i) ∈ E iA JσKΦ′i (w′, w0). So from Lemma 7, we have that
(v1 u1,⊥σ) ∈ EA JσKΦi (w′, w0) and (⊥σ, v2 u2) ∈ EA JσKΦi (w′, w0), i.e. both vi ∈
ViA JτKΦi w.

Contexts The same proof as for values applies.

Terms Suppose first that both (Mi, hi) 7→∗ (M ′i , h
′
i) with M ′i irreducible. If both M ′i

are equal to some values vi, and there exists a world w′ wF∗ w such that (h′1, h
′
2,D) ∈

QΦ′(w
′) and (v1, v2) ∈ VA JτKΦ′ w′. Then the coinduction hypothesis on values gives

us that both vi ∈ ViA JτKΦ′i w
′, since incons(w′). Moreover, both (h′i,Di) ∈ Qi

Φ′i
(w′),

so we conclude that both (Mi, hi,Di) ∈ E iA JτKΦ′i (w,w0).
Otherwise, suppose that bothM ′i are equal to some callbacksKi[fi vi] with (f1, f2, σ →

σ′) ∈ Φ′, and there exists a world w′ wF∗ w such that (h′1, h
′
2,D) ∈ QΦ′(w

′),
(K1,K2) ∈ KA Jσ, τKΦ′ w′ and (v1, v2) ∈ VA JτKΦ′ w′. Then the coinduction hy-
pothesis on values and contexts gives us that both Ki ∈ KiA Jσ, τKΦ′i w

′ and both
vi ∈ ViA Jσ′KΦ′i w

′, since incons(w′). Moreover, both (h′i,Di) ∈ Qi
Φ′i

(w′), so we
conclude that both (Mi, hi,Di) ∈ E iA JτKΦi (w,w0).

Otherwise, we have directly that both (Mi, hi,Di) ∈ E iA JτKΦi (w,w0).
�

24

C.1 Compositionality

Let us consider w1, w2 two worlds such that wj = (sj , hj1, h
j
2,Dj , bj) with dom(h1

i)∩
dom(h2

i) = ∅ for i ∈ {1, 2} and dom(D1) ∩ dom(D2) = ∅. Then we define the
product of w1, w2, written w1 ⊗ w2, as the world ((s1, s2), h1

1 · h1
2, h

1
2 · h2

2, b
1 ∨ b2).

Definition 7. Let consider A1,A2 two WTS such that Ai = (δipriv, δ
i
pub). We de-

fine the product of A1,A2, written A1 ⊗ A2, as the WTS (δpriv, δpub) where δX
def
=

{(w,w′) | ∃w1w2, w
′
1, w

′
2.w = w1⊗w2 ∧w′ = w′1⊗w′2 ∧ δ1

X(w1, w
′
1)∧ δ2

X(w2, w
′
2)}

with X ∈ {priv,pub}.

Lemma 11. Let us consider A1,A2 two WTS and w1, w2 two worlds such that such
that and w1⊗w2 is well defined. Suppose that (v1, v2) ∈ VA1

JτKΦ w1, then (v1, v2) ∈
V(A1⊗A2) JτKΦ (w1 ⊗ w2).

Lemma 12. Let us considerA1,A2 two WTS andw1
0, w

2
0, w

1, w2 four worlds such that
w1

0 ⊗ w2
0 and w1 ⊗ w2 are well defined. Suppose that (K1,K2) ∈ EA1 JτKΦ (w1, w1

0),
then (M1,M2) ∈ K(A1⊗A2) Jτ, σKΦ ((w1 ⊗ w2), (w1

0 ⊗ w2
0)).

Lemma 13. Let us consider A1,A2 two WTS and w1
0, w

2
0, w

1, w2 four worlds such
that w1

0⊗w2
0 and w1⊗w2 are well defined. Suppose that for all w̃1

0 ∈ F(w1
0) and w̃1 ∈

F(w1) with w̃1 wF∗ w̃1
0 , we have (M1,M2) ∈ EA1

JτKΦ (w̃1, w̃1
0), then (M1,M2) ∈

E(A1⊗A2) JτKΦ ((w1 ⊗ w2), (w1
0 ⊗ w2

0)).

Theorem 8. Let us consider A1,A2 two WTS and w1, w2 two worlds such that such
thatA1⊗A2 and w1⊗w2 are well defined. Taking (M1,M2) ∈ EA1

Jτ → σKΦ w1 and
(N1, N2) ∈ EA2

JτKΦ w2, we get that (M1 N1,M2 N2) ∈ E(A1⊗A2) JτKΦ (w1 ⊗ w2).

C.2 Dealing with η-equivalence.

We treat λ-abstractions and variables of functional types in a uniform way. This al-
lows Kripke open bisimulations to be compatible with η-equivalence, which is not
the case of RTS defined in [3]. Let us prove that (f, λx.fx) ∈ VA Jσ → τKΦ w with
Φ = (f, f, σ → τ). To do so, we take ∀w′ wF∗ w, Φ′#Φ, and v1, v2 two abstract values
such that (v1, Φ

′
1), (v2, Φ

′
2) ∈ JσK and v1 ∼Φ′,w′.D v2. We then have to prove that (fv1,

(λx.fx)v2) ∈ EA JτKΦ·Φ′ w′, which amounts to prove that (v1, v2) ∈ VA JσKΦ·Φ′ w′,
which is proven in the following lemma.

Lemma 14. Let us consider Φ a span on functional names, w a world and v1, v2 two
abstract values such that (v1, Φ1), (v2, Φ2) ∈ JτK and v1 ∼Φ,w.D v2. Then (v1, v2) ∈
VA JτKΦ w,

Proof: By induction on τ :

– If τ is of ground type, this is straightforward.
– If τ is some functional type σ → σ′, we take w′ wF∗ w,Φ′#Φ, and v′1, v

′
2 two

abstract values such that (v′1, Φ
′
1), (v′2, Φ

′
2) ∈ JσK and v′1 ∼Φ′,w′.D v′2. Then, we

must prove that (v1 v
′
1, v2 v

′
2) ∈ EA Jσ′KΦ·Φ′ w′. To do so, we just have to prove

that (v′1, v
′
2) ∈ VA JσKΦ·Φ′ w′, which comes from the induction hypothesis.

25

– If τ is some product type σ × σ′, then both vi =
〈
v1
i , v

2
i

〉
, and from v1 ∼Φ,w.D v2

we get the existence of two disjoint spans Φ1, Φ2 such that:
• Φ = Φ1 · Φ2,
• for all j ∈ {1, 2}, (vj1, Φ

j
1), (vj2, Φ

2
2) ∈ JσjK,

• for all j ∈ {1, 2}, vj1 ∼Φj ,w.D v
j
2.

Then, the coinduction hypothesis gives us that both (vj1, v
j
2) ∈ VA JσjKΦj w, so that

(
〈
v1

1 , v
2
1

〉
,
〈
v1

2 , v
2
2

〉
) ∈ VA Jσ × σ′KΦ w.

�

D Soundness

Lemma 15. Let us consider (u1, u2) ∈ VA JτKΦO w. Then taking (v1, φ1, γ1) ∈ AValu1
(τ)

and (v2, φ2, γ2) ∈ AValu2(τ) such that dom(φi)∩dom(ΦO,i) = ∅, there exists a span
ΦP satisfying ΦP,i = φi such that v1 ∼w.DΦP v2 and (γ1, γ2) ∈ GA JΦP KΦO w.

Proof: By induction on τ .
– If τ is a ground type, then it is straightforward since both γi are empty, and both
ui = vi.

– Suppose that (u1, u2) ∈ VA Jσ → τKΦO w. Then we have both vi = fi with fi /∈
dom(ΦO,i), φ = [fi 7→ σ → τ] and γi = [fi 7→ ui]. So we define ΦP as the span
{(f1, f2, σ → τ)}, and indeed v1 ∼w.DΦP ·ΦO v2 and (γ1, γ2) ∈ GA JΦP KΦO w.

– Suppose that (u1, u2) ∈ VA Jσ1 × σ2KΦO w, then both ui are equal to some pairs〈
u1
i , u

2
i

〉
. Then for all i ∈ {1, 2} we have vi =

〈
v1
i , v

2
i

〉
with (v1

i , φ
1
i , γ

1
i) ∈

AValu1
i
(σ1) and (v2

i , φ
2
i , γ

2
i) ∈ AValu2

i
(σ2) such that dom(φ1

i),dom(φ2
i) and

dom(ΦO,i) are two by two disjoint. Then, the induction hypothesis gives us the
existence of two spans Φ1

P , Φ
2
P satisfying for all j ∈ {1, 2}, ΦjP,i = φji and

vj1 ∼w.DΦjP ·ΦO
vj2 and (γj1, γ

j
2) ∈ GA

r
ΦjP

z

ΦO
w. From the fact that dom(φ1

i) ∩

dom(φ2
i) = ∅, we deduce that the span Φ1

P ∪ Φ2
P is well formed, and we can

conclude easily.
�

Lemma 16. Let w a world and (h1, h2,D) ∈ QΦO (w). Then taking (h′1, γ1, φ1) ∈
AHeapD1

(h1|D1
) and (h′2, γ2, φ2) ∈ AHeapD2

(h2|D2
) such that dom(φi)∩ΦO,i =

∅, there exists a span ΦP satisfying ΦP,i = φi such that (h1[h′1], h2[h′2],D, ΦP ·ΦO) ∈
PΦO (w) and (γ1, γ2) ∈ GA JΦP KΦO w.

Proof: By induction on the size of D. If it is empty it is straightforward. Otherwise, let
suppose that D = {(l1, l2, τ)} ∪ D′. Then, we have both:

– hi = h̃i · [li 7→ vi],
– h′i = h′′i · [li 7→ vi],
– γi = γ′i · γ′′i and
– φi = φ′i · φ′′i with

26

– (h′′1 , γ
′′
1 , φ

′′
1) ∈ AHeapD1

(h̃i|D1
),

– (vi, φ
′
1, γ
′
i) ∈ AValhi(l1)(τ).

From Lemma 1, we get that there exists a span Φ′P satisfying Φ′P,i = φ′i such that
v1 ∼w.DΦ′P v2 and (γ′1, γ

′
2) ∈ GA JΦ′P KΦO w. Moreover, the induction hypothesis gives

us that there exists a span Φ′′P satisfying Φ′′P,i = φ′′i such that (h̃1[h′′1], h̃2[h′′2],D, Φ′′P ·
ΦO) ∈ PΦO (w) and (γ′′1 , γ

′′
2) ∈ GA JΦ′′P KΦO w. Since both hi[h′i] = h̃i[h

′′
i] · [li 7→ vi],

we can conclude easily. �

Lemma 17. Let us consider i ∈ {1, 2}, w a world and u ∈ ViA JτKφ w. Then taking
(v, γ, φ′) ∈ AValu(τ) such that dom(φ)∩dom(φ′) = ∅, we get that γ ∈ GA Jφ′Kφ w.

Proof: By a straightforward induction on τ . �

Lemma 18. Let us consider i ∈ {1, 2}, w a world and (h,D) ∈ Qi
φ(w). Then tak-

ing (h′, γ, φ′) ∈ AHeapDi(h|Di) such that dom(φ) ∩ dom(φ′) = ∅, we get that
(h[h′],Di, φ · φ′) ∈ Pφ(w) and γ ∈ GA Jφ′Kφ w.

Proof: By a straightforward induction on the size ofD, using Lemma 17 to conclude.�

Then, we first prove a correspondence between the predicative reasoning with the
Kripke open bisimulations and with the bisimulations on traces.

Lemma 19. Let i ∈ {1, 2}, n ∈ N and n+ 1 world wn wF∗ . . . wF∗ w0 such that
– w w∗pub w0.cons(w),
– for all j ∈ {1, . . . , n},Kj ∈ KA Jσj , τjKφO (wn, wj−1),
– γ ∈ GiA JiKφP φO.

Then, for all (h,D, φ′) ∈ PiφP ·φO (wn), writing S for the stack (Kn[•σn], τn) :: . . . ::

(K1[•σ1
], τ1), we get that 〈S, γ, φ′, h,D〉 ∈ O i.

Lemma 20. Let i ∈ {1, 2}, n ∈ N and n+ 2 world wn+1 wF∗ . . . wF∗ w0 such that
– w w∗pub w0.cons(w),
– for all j ∈ {1, . . . , n},Kj ∈ KiA Jσj , τjKφO (wn, wj−1),
– γ ∈ GiA JiKφP φO.

Writing S for the stack (Kn[•σn], τn) :: . . . :: (K1[•σ1
], τ1), we get that for all

(h,D, φ′) ∈ PiφP ·φO (wn), if (M,h,D) ∈ E iA JτKφ′ (wn+1, wn) then 〈(M, τ)S, γ, φ′, h,D〉 ∈
P i.

Proof: The two lemmas are proven by a mutual coinduction.

Soundness on Diverging Contexts Taking (h1, h2,D, Φ′) ∈ PΦP ·ΦO (wn), we write C
for the configuration 〈S, γ, φ′, h,D〉. Let us consider any action a and a configuration
C ′ = 〈S ′, γ, φ′′, h[h′], D′〉 such that C a

=⇒ C ′.

27

– If a is an answer (〈v〉 , h′), we get that S ′ = (Kn[v], τn) :: (Kn−1[•σn−1
], τn−1) ::

. . . :: (K1[•σ1
], τ1). Let us consider D′ such that D′i = D′\D, so that we define

w′ = (w.s, w.h1, w.h2,D∪D′, w.b). Then, fromKn ∈ KiA Jσn, τnKφ′ (wn, wn−1)

and (h[h′], D′, φ′′) ∈ Piφ′′(w
′), we get that (Kn[v], h′, D′) ∈ E iA JτnKφ′′ (w′, wn).

Finally, the coinduction hypothesis on diverging terms gives us that C ′ ∈ P i.
– If a is a question (f 〈v〉 , h′′) with γ(f) = u and φP (f) = σ → τ , we get

that S ′ = (u v, τ) :: S. Let us consider D′ such that D′i = D′\D, so that we
define w′ = (w.s, w.h1, w.h2,D ∪ D′, w.b). Then, from u ∈ ViA JτKφ′ wn and
(h[h′], D′, φ′′) ∈ Piφ′′(w

′), we get that (u v, h[h′], D′) ∈ E iA JτKφ′′ (w′, wn). Fi-
nally, the coinduction hypothesis on diverging terms gives us that C ′ ∈ P i.

Soundness on Diverging Terms Taking (h,D, φ′) ∈ PiφP ·φO (wn), such that (M,h,D) ∈
E iA JτKφ′ (wn+1, wn), we write C for the configuration 〈(M, τ)S, γ, φ′, h,D〉.

Let us consider any action a such that C −→ C ′
a−→ C ′′ with C ′ = 〈(M ′, τ) ::

S, γ, Φ′i, h′,Di〉 and C ′′ = 〈S ′, γ′, φ′′, h′[h′′], D′〉, where γ′ = γ · γv · γh and φ′′ =
Φ′i · φv · φh and (h′′, γh, φh) ∈ AHeapD′(h

′).
From (M,h,D) ∈ E iA JτKφ′ (wn+1, wn) we get the existence of a future world

w′ w wn+1 with incons(w′) such that (h′, D′) ∈ Qi
φ′(w

′). Thus, Lemma 18 gives us
that γh ∈ GiA JiKφh Φ

′
i and (h[h′′], D′, φ′′) ∈ Piφ′′(w

′).
– If a is an answer (〈v̄〉 , h′′), we get that S ′ = (Kn−1[•σn−1], τn−1) :: . . . ::

(K1[•σ1], τ1), M ′ = u with (v, γv, φv) ∈ AValu(τ). Crucially, wn is inconsistent
since w′ wpub wn (because a is an answer), and w′ is inconsistent. This means
that wn is distinct from w0, so that n 6= 0.
From u ∈ ViA JτKΦ′i w, we get from Lemma 17 that γv ∈ GiA JiKφv Φ

′
i. From

Lemma 4, we finally get that γ′ ∈ GiA JiKΦP,i·φv·φh Φ
′
i, so the coinduction hypoth-

esis on diverging contexts (since n 6= 0) gives us that C ′′ ∈ O φ′′D′.
– If a is a question (f̄ 〈v〉 , h′′) we get that S ′ = S and M ′ = K[f u] with Φ′i(f) =
σ → σ′. From u ∈ ViA JτKΦ′i w, we get from Lemma 17 that γv ∈ GiA JiKφv Φ

′
i,

so using Lemma 4, we finally get that γ′ ∈ GiA JiKΦP,i·φv·φh Φ
′
i. Using the fact that

K ∈ KiA Jσ′, τKΦ′i w, the coinduction hypothesis on diverging contexts gives us
that C ′ ∈ P i.

�

Finally, we can state the wanted soundness theorems on Player and Opponent stacks.

Theorem 9. Let n ∈ N and n+ 2 world wn+1 wF∗ wn wF∗ . . . wF∗ w0 such that
– w w∗pub w0.cons(w),
– (M1,M2) ∈ EA JτKΦO (wn+1, wn),
– for all j ∈ {1, . . . , n}, (Kj

1 ,K
j
2) ∈ KA Jσj , τjKΦO (wn+1, wj−1),

– (γ1, γ2) ∈ GA JΦP KΦO wn+1.
Then for all (h1, h2,D, Φ′) ∈ PΦP ·ΦO (wn+1), writing Si for (Kn

i [•σn], τn) :: . . . ::
(K1

i [•σ1
], τ1), (〈(M1, τ) :: S1, γ1, Φ

′
1, h1,D1〉, 〈(M2, τ) :: S2, γ2, Φ

′
2, h2,D2〉) ∈ PΦ′,D.

Theorem 10. Let n ∈ N and n world wn wF∗ . . . wF∗ w0 such that

28

– ∀w′0 w∗pub w0.cons(w
′
0),

– for all j ∈ {1, . . . , n}, (Kj
1 ,K

j
2) ∈ KA Jσj , τjKΦO (wn, wj−1),

– (γ1, γ2) ∈ GA JΦP KΦO wn.
Then,for all (h1, h2,D, Φ′) ∈ PΦP ·ΦO (wn), writing Si for the stack (Kn

i [•σn], τn) ::
. . . :: (K1

i [•σ1], τ1), (〈S1, γ1, Φ
′
1, h1,D1〉, 〈S2, γ2, Φ

′
2,D2, 〉) ∈ OΦ′,D.

Proof:

Soundness on Terms Let us consider (h1, h2,D, Φ′) ∈ PΦO·Φ′(w), so that we write Ci
for the Player configuration 〈(Mi, θi), γi, Φ

′
i, hi,Di〉.

Suppose first that both (Mi, hi, Di) ∈ E iA JτKΦ′O,i (w,w0), we prove that both

Ci ∈ P i. So let i ∈ {1, 2}. First, if (Mi, hi) ↑, then indeedCi ∈ P i. Otherwise, there
exists (M ′, h′) irreducible such that (Mi, hi) 7→∗ (M ′, h′). Then there exists a worlds
w′ w wn+1 with incons(w′) and (M ′, h′, D′) ∈ E iA JτKΦ′O,i (w′, wn). Moreover,

Lemma 9 and Lemma 5 gives us that for all j ∈ {1, . . . , n},Kj
i ∈ KiA Jσj , τjKΦO (w′, wj−1),

so Lemma 20 gives us that 〈Si, γ′i, Φ′i, h′i[h′′i],D′i〉 ∈ O i.
Otherwise, we get that both

Ci −→ 〈(M ′i , θi) :: Si, γi, Φ′i, h′i,Di〉
ai−→ 〈Si, γ′i, φ′′i , h′i[h′′i],D′i〉

i.e. (Mi, hi) 7→ (M ′i , h
′
i) withM ′1,M

′
2 irreducible. From (M1,M2) ∈ EA JτKΦO (wn+1, wn),

we get that here exists a span D′ with D′i = D′i, and a world w′n+1 w wn+1 such that
(h′1, h

′
2,D′) ∈ QΦ′(w

′
n+1).

– If bothM ′i are equal to values ui, then both ai = (〈v̄i〉 , h′′i) where (vi, γv,i, φv,i) ∈
AValui(θi) and (h′′i , γh,i, φh,i) ∈ AHeapD′i(h

′
i|D′i

) with φ′′i = Φ′i · φv,i, ·φh,i.
From (u1, u2) ∈ VA JτKΦ′ w′n+1, Lemma 1 gives us the existence of a span Φv
satisfying Φv,i = φv,i such that v1 ∼D

′

Φ′·Φv v2 and (γv,1, γv,2) ∈ GA JΦvKΦ′ w′n+1.
Moreover, Lemma 16 gives us the existence of a span Φv satisfying Φv,i = φv,i
such that (h′1[h′′1], h′2[h′′2],D′, Φv·Φ′) ∈ PΦ′(w

′
n+1) and (γh,1, γh,2) ∈ GA JΦhKΦ′ w′n+1.

Then γ′i = γ′i · γv,i · γh,i, so that from (γ1, γ2) ∈ GA JΦP KΦO wn we get from
Lemma 4 that (γ1, γ2) ∈ GA JΦP KΦ′ w′n+1, since w′n+1 w∗ wn+1 wF∗ wn.
So (γ′1, γ

′
2) ∈ GA JΦP · Φv · ΦhKΦ′ w′n+1. Finally, from the fact that for all j ∈

{1, . . . , n}, (Kj
1 ,K

j
2) ∈ KA Jσj , τjKΦO (wn+1, wj−1) and w′n+1 wpub wj , we

get using Lemma 5 that (Kj
1 ,K

j
2) ∈ KA Jσj , τjKΦ′ (w

′
n+1, wj−1, and applying the

coinduction hypothesis on Opponent evaluation stacks, we get that

(〈S1, γ
′
1, φ
′′
1 , h
′
1[h′′1],D1〉, 〈S2, γ

′
2, φ
′′
2 , h2[h′′2],D2〉) ∈ OΦ′·Φv·Φh,D′

– Otherwise both M ′i are equal to callbacks Ki[fi ui], then both ai = (f̄i 〈vi〉 , h′′i)
where (vi, γv,i, φv,i) ∈ AValui(θi) and (h′′i , γh,i, φh,i) ∈ AHeapD′i(h

′
i|D′i

) with
dom(φv,i),dom(φv,i) and dom(Φ′O,i) two by two disjoint. From (u1, u2) ∈ VA JτKΦ′ w′,
Lemma 1 gives us the existence of a span Φv satisfying Φv,i = φv,i such that
v1 ∼D

′

Φ·Φv v2 and (γv,1, γv,2) ∈ GA JΦvKΦ′ w′n+1. Moreover, Lemma 16 gives us
the existence of a span Φh satisfying Φh,i = φh,i such that (h′1[h′′1], h′2[h′′2],D′, Φh ·

29

Φ′) ∈ PΦ′(w
′
n+1) and (γh,1, γh,2) ∈ GA JΦhKΦ′ w′n+1. Then γ′i = γ′i · γv,i · γh,i,

so that from (γ1, γ2) ∈ GA JΦP KΦO wn we get that (γ1, γ2) ∈ GA JΦP KΦ′ w′n+1,
since w′n+1 w∗ wn+1 wF∗ wn. So (γ′1, γ

′
2) ∈ GA JΦP · Φv · ΦhKΦ′ w′n+1. Then,

from (K1,K2) ∈ KA Jσ, τKΦ′ w′n+1, the coinduction hypothesis gives us that
(〈(K1[•σ], τ) :: S1, γ

′
1, φ
′′
1 , h
′
1[h′′1], D′1〉, 〈(K2[•σ], τ) :: S2, γ

′
2, φ
′′
2 , h
′
2[h′′2], D′2〉) ∈

OΦ′,D′ .
We conclude that (〈(M1, τ) :: S1, γ1)〉 , 〈(M2, τ) :: S2, γ2)〉) ∈ PA(ΦP ·ΦO, wn+1).

Soundness on Contexts Let us consider (h1, h2,D, Φ′) ∈ PΦP ·ΦO (w), Φ′′ w Φ′,D′ w
D and a1, a2 two actions such that a1 ∼D

′

Φ′(a2.
– Suppose that both ai = (〈vi〉 , h′i), so that n > 0. From (Kn

1 ,K
n
2) ∈ KA Jσn, τnKΦO (wn, wn−1),

we get that, working in the world w′ = (w.s, w.h1, w.h2,D′), since w′ ∈ Fw(),
(Kn

1 [v1],Kn
2 [vn]) ∈ EA JτiKΦ′′ w′n, wn−1. Then, from the fact that (h1[h′1], h2[h′2],D′, Φ′′) ∈

PΦ′′(w
′), the coinduction hypothesis gives us that

(〈(Kn
1 [v1], τn) :: S ′1, γ1), Φ′′1 , h1[h′1],D′1〉, 〈(Kn

2 [v2], τn) :: S ′1, γ2), Φ′′2 , h2[h′2],D′2〉) ∈ OΦ′′,D′

with both Si = (Ki[•σ], τ) :: S ′i.
– Otherwise, both ai = (fi 〈ui〉 , h′i) with fi ∈ dom(γi), so that there exists a func-

tional type σ → τ such that (f1, f2, σ → τ) ∈ ΦP . Then, we have that both
Ci

ai−→ 〈(uivi, σ) :: Si), γi, Φ′′i , hi[h′i],D′i〉. with γi(fi) = ui. From (γ1, γ2) ∈
GA JΦP KΦO wn, we get that (u1 v1, u2 v2) ∈ EA JτnKΦ′O w

′, and the coinduction
hypothesis gives us that

(〈(u1 v1, τ) :: S1, γ1), Φ′′1 , h1[h′1],D′1〉, 〈(u2 v2, τ) :: S2, γ2), Φ′′2 , h2[h′2],D′2〉) ∈ OΦ′′,D′

�

E Completeness

E.1 Exhaustive WTS

The exhaustive WTS A = (δpriv, δpub) has a tree-structure, i.e., there does not exist
two states s, s′ s.t. s′ ≥A s and s ≥A s′, where we define s′ ≥A s as δ∗priv(s, s′) non
empty. Thus, for any state s of A we can define the sub-WTS A≥s whose transition
functions are restricted to states s′ ≥A s. Then, one can relate the properties of two
WTS A,A′ about worlds w, when A≥s = A′≥s and the state of w is greater than s.

Lemma 21. LetL a stack of worldwn :: . . . w0 such that (〈S1, γ1〉 〈S2, γ2〉) ∈PA(Φ,L).
LetA′ an LTS s.t.A≥wn.s = A′≥wn.s and for all i ∈ {0, . . . , n−1}, {s′ | A.δpub(wi.s, s

′)∧
s′ ≥A wn.s} = {s′ | A′.δpub(wi.s, s

′) ∧ s′ ≥A′ wn.s}. Then (〈S1, γ1〉 〈S2, γ2〉) ∈
PA′(Φ, (w :: L)).

Theorem 11. Taking 〈S1, γ1〉 , 〈S2, γ2〉 two Player reduced configurations such that
both S1,S2 have the same size n, Φ a spans on functional names, L a list of n world
whose top element is writtenw, and (h1, h2,D, Φ) ∈ PΦ(w). WritingCi for 〈Si, γi, Φi, hi,Di〉,
if (C1, C2) ∈ PΦ,D then (〈S1, γ1〉 〈S2, γ2〉) ∈PA(Φ,L), whereA = SELΦ(〈S1, γ1〉 , 〈S2, γ2〉).

30

Theorem 12. Taking 〈S1, γ1〉 , 〈S2, γ2〉 two Opponent reduced configurations such that
both S1,S2 have the same size n, Φ a spans on functional names, L a list of n + 2
world whose top element is written w, and (h1, h2,D, Φ) ∈ PΦ(w). Writing Ci for
〈Si, γi, Φi, hi,Di〉, if (C1, C2) ∈ OΦ,D then (〈S1, γ1〉 〈S2, γ2〉) ∈ PA(Φ,L), where
A = SKL

Φ(〈S1, γ1〉 , 〈S2, γ2〉).

Proof:

Terms Let us consider (h1, h2,D, Φ′) ∈ PΦ(w), and suppose that there exists Φ′′ w
Φ′,D′ w D and a1 ∼D

′

Φ′′ a2 such that, writing Ci for 〈Si, γi, Φ′i, hi,Di〉, one has that
both Ci

ai=⇒ 〈S ′i, γ′i, Φ′′i , h′i,D′〉. Then, defining w′ as (s, h′
1|D′1

, h′
2|D′1

,D′′), one get that

w′A. w w.
Writing A′ for SKL′

Φ′(〈S ′1, γ′1〉 , 〈S ′2, γ′2〉), the coinduction hypothesis gives us that
(〈S ′1, γ′1〉 〈S ′2, γ′2〉) ∈OA(A′, Φ′′)L′. From Lemma 21, we finally get that (〈S ′1, γ′1〉 〈S ′2, γ′2〉) ∈
OA(Φ′′, L′).

Contexts Let us consider (h1, h2,D, Φ′) ∈ PΦ(w), a span Φ′′ w Φ, any world w′ ∈
F(w) and two actions a1 ∼w

′.D
Φ′′ a2. From the fact thatA exists, we get that there exists

S ′1,S ′2 such that (C1
a1=⇒ 〈S ′1, γ1, Φ

′′
1 , h
′
1,D′1〉), iff (C1

a1=⇒ 〈S ′1, γ1, Φ
′′
1 , h
′
1,D′1〉).

Writing A′ for SEL
′

Φ′(〈S ′1, γ1〉 , 〈S ′2, γ2〉), the coinduction hypothesis gives us that
(〈S ′1, γ1〉 〈S ′2, γ2〉) ∈PA′(Φ′′, L′). From Lemma 21, we finally get that (〈S ′1, γ1〉 〈S ′2, γ2〉) ∈
⊕′′A(L′,).

We now prove that (〈S1, γ1〉 , 〈S2, γ2〉) ∈ FaitfulΦ(w). Let us considerw′ wF∗ w,
so that there exists n ∈ N and 2 ∗ n worlds

– w1 ∈ F(w),
– for all i ∈ {1, . . . , n}, w′i w wi,
– for all i ∈ {1, . . . , n− 1}wi+1 ∈ F(w′i),
– w′ w w′n.

We then reason by induction on n. If n = 0 it is straightforward since we can take Ti
the empty trace. Otherwise, suppose that n > 0 and let (h′1, h

′
2,D′, Φ′′) ∈ PΦ(w′), one

must find (h1, h2,D, Φ′) ∈ PΦ(w) and build two traces T1, T2 such that 〈Si, γi, Φ′i, hi,Di〉
Ti=⇒

〈S ′i, γ′i, Φ′′i , h′i,D′i〉 with (〈S ′1, γ′1〉 , 〈S ′2, γ′2〉) ∈OA(Φ′′, (w′ :: L′)).
From the fact thatw1 ∈ F(w) andw′1 w w1, the fact thatA = SELΦ(〈S1, γ1〉 , 〈S2, γ2〉)

gives us the existence of:
– (h1, h2,D, Φ′) ∈ PΦ(w),
– (h1

1, h
1
2,D1, Φ1) ∈ PΦ′(w1),

– (h2
1, h

2
2,D2, Φ2) ∈ PΦ1(w2),

– a1
1 ∼D

1

Φ1 a1
2,

– a2
1 ∼D

2

Φ2 a2
2,

– (
〈
S1

1 , γ1

〉
,
〈
S1

2 , γ2

〉
) ∈OA(Φ1, L1),

– (
〈
S2

1 , γ
2
1

〉
,
〈
S2

2 , γ
2
2

〉
) ∈OA(Φ2, L2)

such that, writing C1
i for the configuration 〈S1

i , γi, Φ
1
i , h

1
i ,D1

i 〉 and C1
i for the configu-

ration 〈S2
i , γ

2
i , Φ

2
i , h

2
i ,D2

i 〉, we get that Ci
a1i=⇒ C1

i

a2i=⇒ C2
i .

31

From (
〈
S2

1 , γ
2
1

〉
,
〈
S2

2 , γ
2
2

〉
) ∈ OA(Φ2, L2), we get that (

〈
S2

1 , γ
2
1

〉
,
〈
S2

2 , γ
2
2

〉
) ∈

FaitfulΦ′′(w
′
1). The induction hypothesis thus gives us the existence of two traces

T ′1, T
′
2 and two partial configurations (〈S ′1, γ′1〉 , 〈S ′2, γ′2〉) ∈ OA(Φ′′, (w′ :: L′)) such

that, writing C ′i for the configuration 〈S ′i, γ′i, Φ′′i , h′i,D′i〉, we have that both C2
i

T ′i=⇒ C ′i.

Thus, we have that both Ci
a1·a2·T ′i=====⇒ C ′i.

Finally, we prove that Faitfulpub,Φ(w)〈S1, γ1〉〈S1, γ1〉 in the same way. �

E.2 Proof of Completeness

Lemma 22. Let u1, u2 two values, (v1, φ1, γ1) ∈ AValu1
(τ), (v2, φ2, γ2) ∈ AValu2

(τ)
such that there exists two disjoint span on functional names ΦP , ΦO and a world w
such that ΦP,i = φi, v1 ∼w.DΦP v2 and (γ1, γ2) ∈ GA JΦP KΦO w. Then (u1, u2) ∈
VA JτKΦO w.

Proof: By induction on τ :
– If τ is ground, it is straightforward since both ui = vi.
– If τ = σ → σ′, then both vi = fi with fi /∈ dom(ΦO,i), φi = [fi 7→ τ] and
γi = [fi 7→ ui]. So from v1 ∼w.DΦ v2, we get that ΦP = (f1, f2, τ), and from
(γ1, γ2) ∈ GA JΦP KΦO w we get that (u1, u2) ∈ VA JτKΦO w.

– If τ = σ1 × σ2 then both ui are equal to some pairs
〈
u1
i , u

2
i

〉
. Then for all i ∈

{1, 2} we have vi =
〈
v1
i , v

2
i

〉
with (v1

i , φ
1
i , γ

1
i) ∈ AValu1

i
(σ1) and (v1

i , φ
2
i , γ

2
i) ∈

AValu2
i
(σ1). From v1 ∼w.DΦ v2, we get that ΦP = Φ1

P ∪ Φ2
P with ΦjP,i = φji for

all i, j ∈ {1, 2}. We can conclude easily using the induction hypothesis.
�

Lemma 23. Let h1, h2 two heaps, D a span on part of their domain, (h′1, γ1, φ1) ∈
AHeapD1

(h1|D1
) and (h′2, γ2, φ2) ∈ AHeapD2

(h2|D2
) such that there exists two dis-

joint span on functional namesΦP , ΦO and a worldw such thatΦP,i = φi, (h1[h′1], h2[h′2],D, ΦP) ∈
PΦP (w) and (γ1, γ2) ∈ GA JΦP KΦO w. Then (h1, h2,D) ∈ QΦO (w).

Proof: By induction on the size of D. If it is empty it is straightforward. Otherwise, let
suppose that D = {(l1, l2, τ)} ∪ D′. Then, we have both:

– hi = h̃i · [li 7→ ui],
– h′i = h′′i · [li 7→ vi],
– γi = γ′i · γ′′i and
– φi = φ′i · φ′′i with
– (h′′1 , γ

′′
1 , φ

′′
1) ∈ AHeapD1

(h̃i|D1
),

– (vi, φ
′
1, γ
′
i) ∈ AValui(τ).

From (h1[h′1], h2[h′2],D, ΦP) ∈ PΦP (w), we get that there exists two spans Φ′P , Φ
′′
P

such that ΦP = Φ′P · Φ′′P and for all i ∈ {1, 2}, Φ′P,i = φ′i and Φ′′P,i = φ′′i . From
Lemma 22, we get that (u1, u2) ∈ VA JτKΦO w, while the induction gives us that

(h̃1, h̃2,D′) ∈ QΦO (w), so we can conclude easily. �

32

Lemma 24. Let u a value, (v, γ, φ) ∈ AValv(τ), w a world and φO a typing function
such that dom(φ) ∩ dimφO = ∅. If γ ∈ GiA JiKφ φO, then u ∈ ViA JτKφO w.

Proof: By a straightforward induction on τ . �

Lemma 25. Let h a heap, D ⊆ dom(h), (h′, γ, φ) ∈ AHeapD(h|D), w a world and
φO a typing function such that dom(φ)∩ dimφO = ∅. If (h[h′], D, φ) ∈ PiφO (w) and
γ ∈ GiA JiKφ φO, then (h,D) ∈ Qi

φO
(w).

Proof: By a straightforward induction on the size ofD, using Lemma 24 to conclude.�

Lemma 26. Let 〈(K[•σ], τ) :: S, γ〉 ∈O
 i
A (φ,L), then for allw′ wF∗ w and (h′, D′, φ′′) ∈

Pφ(w′), there exists (h,D, φ′) ∈ Pφ(w), a trace T and a reduced configuration

(〈S ′, γ′〉) ∈O
 i
A (φ′′, (w′ :: L′)) such that 〈S, γ, φ, h,D〉 T=⇒ 〈S ′, γ′, Φ′′, h′,D′〉.

Lemma 27. Let 〈(K[•σ], τ) :: S, γ〉 ∈O
 i
A (φ,L), then for allw′ wF∗pub w and (h′, D′, φ′′) ∈

Pφ(w′), there exists (h,D, φ′) ∈ Pφ(w), a trace T and a reduced configuration

(〈S ′, γ′〉) ∈O
 i
A (φ′′, (w′ :: L′)) such that 〈S, γ, Φ′, h,D〉 T=⇒ 〈S, γ′, Φ′′, h′,D′〉.

Lemma 28. Let K a ground-closed evaluation context, w and w0 two worlds, φ =
φP · φO a typing function such that (wj .D)i;φO ` Kj : τj σj and γ a functional
environments with dom(γ) = dom(φp). Taking an Opponent evaluation stack S and a

list of worlds L, of (〈(K[•σ], τ) :: S, γ〉) ∈O
 i
A (φ,L), then K ∈ KiA Jσ, τKφO (w,w0)

and γ ∈ GiA JiKφP φO.

Lemma 29. Let M a ground closed term, w and w0 two worlds, φ = φP · φO a
typing function such that (wD)i;φO ` M : τ , and γ a functional environments with
dom(γ) = dom(φp). Taking an Opponent evaluation stack S and a list of worlds L,

for all (h,D, φ′) ∈ PiφO (w), if 〈(M, τ) :: S, γ, φ′, h,D〉 ∈ P
 i
A (φ, (w :: w0 :: L)),

then (M,h,D) ∈ E iA JτKφ′ (w,w0).

Proof: The two lemmas are proven by a mutual coinduction.

Completeness for Diverging Terms Taking (h,D, φ′) ∈ PiφO (w), we suppose that

C ∈P
 i
A (φ, (w :: w0 :: L)) where C = 〈(M, τ) :: S, γ, φ′, h,D〉.

If C ↑ then (M,h) ↑, so that (M,h,D) ∈ E iA JτKφ′ (w,w0). Otherwise, there exists

an action a and two configurations C ′, C ′′ such that C C−→
′ a−→ C ′′. Let us write C ′ as

〈(M ′, τ) :: S, γ, φ′, h′, D〉, and C ′′ as 〈S ′, γ′, φ′′, h′[h′′], D′〉 such that (M,h) 7→∗
(M ′, h′) with (M ′, h′) irreducible. We then get the existence of a world w′ w w such

that (h′[h′′], D′, φ′) ∈ Piφ′(w
′) and 〈S ′, γ′〉 ∈O

 i
A (φ,w′ :: L′). We then reason by case

analysis on a:
– if a is an answer (〈v̄〉 , h′′, so that M ′ is equal to a value u, then
• w′ wpub w0

33

• S ′ = S,
• φ′′ = φ′ · φv · φh
• γ′ = γ · γv · γh,
• (v, γv, φv) ∈ AValu(τ),
• (h′′, γh, φh) ∈ AHeapD′(h

′′).
From 〈S ′, γ′〉 ∈ OA(i, φ′′)(w′, w0), the coinduction hypothesis gives us that γ′ ∈
GA JφP · φv · φhKφ′ w′ so from Lemma 24 and 25, we get that so that (h′′, D′) ∈
Qi
φ′(w

′) and u ∈ ViA JτKφ′ w′. Thus (M,h′′, D′) ∈ E iA JτKφO (w,w0).
– Otherwise a is a question a = (f̄ 〈v〉 , h′′), so M ′ is equal to a callback K[f u].

Then, there exists a functional type σ → σ′ such that:
• (f, σ → σ′) ∈ φP
• φ′′ = φ′ · φv · φh,
• S ′ = (u v, σ′) :: S with γ(f) = u,
• γ′ = γ · γv · γhi,
• (v, γv, φv) ∈ AValu(τ),
• (h′′, γh,i, φh,i) ∈ AHeapD′(h

′′).
From 〈S ′, γ′〉 ∈ OA(i, φ′′)(w′, w0), the coinduction hypothesis gives us that K ∈
KiA Jτ, σKφO (w′, w0) and γ′ ∈ GiA JiKφP ·φv·φh φ

′ so from Lemma 24 and 25, we
get that (h′′, D′) ∈ Qi

φ′(w
′) and u ∈ ViA JτKφ′ w′. Thus M ∈ E iA JτKφO (w,w0).

Completeness for Diverging Contexts We first prove that for all j ∈ {1, . . . , n},Kj ∈
KiA Jτj , σjKφO (wj , wj1). If n = 0, this is straightforward. Otherwise we consider
w′ wF∗pub wn and (v, φv) ∈ JτK such that φv is disjoint of φ0 · φP . Let (h′, D′, φ′′) ∈
Piφ0·φP ·φv (w′), from Lemma 27, we get the existence of (h,D, φ′) ∈ Pφ(w), a trace

T and a functional environment γ such that (〈S, γ′〉) ∈ O
 i
A (φ′′, (w′ :: L′)) and

〈S, γ, φ′, h,D〉 T=⇒ 〈S, γ′, φ′′, h′, D′〉. Then, one has

〈S, γ′, φ′′, h′, D′〉 〈ui〉,h
′′

−−−−−→ 〈(Kn[v], σ) :: S ′, γ′, φ′′′, h′[h′′], D′′〉

with S = (Kn[•τn], σn) :: S ′. From (〈S ′, γ′〉) ∈ O
 i
A (φ′′, (w′ :: L′)), one get that

〈(Kn[v], σ) :: S ′, γ′〉 ∈ P
 i
A (φ′′′, (w′ :: L)), so the coinduction hypothesis then gives

us that (Kn[v], h′, D′) ∈ E iA JτKφ′′ (w′, w0).
Then, we prove that γ ∈ GiA JiKφP φO. Let (f, σ → σ′) ∈ φP with γ(f) = u, one

must prove that u ∈ VA Jσ → σ′KφO w. To do so, let us consider w′ w∗ w, φ′ a typing
function disjoint from φO, v an abstract value such that (v, φv) ∈ JτK and (h′, D′, φ′′) ∈
PiφP ·φO·φv (w′). One must then prove that (u v, h′, D′) ∈ E iA JτKφ′′ (w′, w0).

From Lemma 26, we get that there exists (h,D, φ′) ∈ Pφ(w), a trace T and a

reduced configuration (〈S ′, γ′〉) ∈ O
 i
A (φ′′, (w′ :: L′)) such that 〈S, γ, φ′, h,D〉 T

=⇒
〈S ′, γ′, φ′′, h′, D′〉. Then, one has 〈S ′, γ′, φ′′, h′, D′〉 fi〈vi〉,h′′−−−−−−→ 〈(u v, σ′) :: S ′, γ′, φ′′′, h′[h′′], D′′〉,
so from 〈S ′, γ′〉 ∈O

 i
A (Φ′′, (w′ :: L′)) one get that 〈(u v1, σ

′) :: S ′, γ′〉 ∈PA(Φ′′, (w′ ::
L′)), so the coinduction hypothesis gives us that (u v, h′[h′′]) ∈ E iA JτKφ′′ (w′, w0). �

34

Theorem 13. Let M1,M2 two ground-closed terms, w and w0 two worlds, Φ = ΦP ·
ΦO a span on functional names such that (w.D)i;ΦO,i ` Mi : τ , and γ1, γ2 two func-
tional environments with dom(γi) = ΦP,i. If (〈M1, γ1〉 , 〈M2, γ2〉) ∈ PA(Φ, (w,w0)),
then (M1,M2) ∈ EA JτKΦO (w,w0).

Theorem 14. Let (K1,K2) a pair of ground-closed evaluation contexts, w and w0 two
worlds, Φ = ΦP ·ΦO a span on functional names such that (w.D)i;ΦO,i ` Ki : σ τ ,
and γ1, γ2 two functional environments with dom(γi) = ΦP,i. Taking two evaluation
stacks S1,S2 and a list of worldsL, if (〈(K1[•σ], τ) :: S1, γ1〉 , 〈(K2[•σ], τ) :: S2, γ2〉) ∈
OA(Φ, (w :: w0 :: L)), then (K1,K2) ∈ KA Jτ, σKΦO (w,w0) and (γ1, γ2) ∈ GA JΦP KΦO wn.

Proof:

Completeness for Terms Let us first take (h1, h2,D, Φ′) ∈ PΦO·ΦP (w), so that we
write Ci for the configuration 〈(Mi, τi) :: Si, γi, Φ′i, hi,Di〉.

Suppose that both Ci ∈P
 i
A (Φi, w). If Ci ↑, then (Mi, hi) ↑ so that (Mi, hi,Di) ∈

E iA JτKΦ′i (w,w0). Otherwise, there exists w′ w w and (h′, D′, φ′′) ∈ Piφ′(w
′) such

that 〈(M ′i , τ) :: Si, γi, φ′′, h′i, D′〉 ∈P
 i
A (φ′, (w′ :: L′′)). Thus, Lemma 29 gives us that

(Mi, hi,Di) ∈ E iA JτKΦ′i (w,w0).
Otherwise, there exists two spans D′ w D and Φ′′ w Φ′, two Player actions a1, a2

such that a1 ∼D
′

Φ′′ a2, such that Ci −→ C ′i
ai−→ C ′′i , where

– C ′i = 〈(Mi, τi) :: Si, γi, Φ′i, hi,Di〉 with (Mi, hi) 7→∗ (M ′i , h
′
i) and M ′i irre-

ducible,
– C ′′i = 〈S ′i, γ′i, Φ′′i , h′i[h′′i],D′i〉.

Then there existsw′ w w such that (h′′1 , h
′′
2 ,D′, Φ′′) ∈ PΦ

′′

w′ () and (〈S ′2, γ′2〉 , 〈S ′2, γ′2〉) ∈
OA(Φ′′, (w′, w0)). We reason by case analysis on the ai:

– If both ai are equal to answers (〈v̄i〉 , h′′i), so that both M ′i are equal to values ui,
then:
• w′ wpub w0,
• both S ′i = Si,
• Φ′′ = Φ′ · Φv · Φh
• both γ′i = γi · γv,i · γh,i,
• both (vi, γv,i, Φv,i) ∈ AValui(τ),
• both (h′′i , γh,i, Φh,i) ∈ AHeapD′i(h

′′
i).

From (〈S ′2, γ′2〉 , 〈S ′2, γ′2〉) ∈ OA(Φ′′, (w′, w0)), the coinduction hypothesis gives
us that (γ′1, γ

′
2) ∈ GA JΦP · Φv · ΦhKΦ′ w′ so from Lemma 22 and 23, we get that

so that (h′′1 , h
′′
2 ,D′) ∈ QΦ′(w

′) and (u1, u2) ∈ VA JτKΦ′ w′. Thus (M1,M2) ∈
EA JτKΦO (w,w0).

– Otherwise both ai are questions (f̄i 〈vi〉 , h′′i) so that M ′i are equal to callbacks
Ki[fiui], and from a1 ∼D

′

Φ′O·ΦD
a2 there exists a functional type σ → σ′ such that:

• (f1, f2, σ → σ′) ∈ ΦP ,
• Φ′′ = Φ′ · Φv · Φh,
• both S ′i = (uivi, σ

′) :: Si with γi(fi) = ui,
• both γ′i = γi · γv,i · γh,i

35

• both (vi, γv,i, Φv,i) ∈ AValui(τ),
• both (h′′i , γh,i, φh,i) ∈ AHeapD′i(h

′′
i).

From (〈S ′2, γ′2〉 , 〈S ′2, γ′2〉) ∈ OA(Φ′′, (w′, w0)), the coinduction hypothesis gives
us that (K1,K2) ∈ KA Jτ, σKΦO (w′, w0) and (γ′1, γ

′
2) ∈ GA JΦP · Φv · ΦhKΦ′ w′

so from Lemma 22 and 23, we get that (h′′1 , h
′′
2 ,D′) ∈ QΦ′(w

′) and (u1, u2) ∈
VA JτKΦ′ w′. Thus (M1,M2) ∈ EA JτKΦO (w,w0).

Completeness for Contexts We first prove that for all j ∈ {1, . . . , n}, (Kj
1 ,K

j
2) ∈

KA Jτj , σjKΦO (wj , wj1). If n = 0, this is straightforward, otherwise we considerw′ wF∗pub

wn, Φ′ a span disjoint from ΦO, and v1, v2 two abstract values such that (vi, Φ
′
i) ∈ JτK

and v1 ∼w
′.D′

Φ′ v2.
From Faitfulpub,Φ(w)〈S1, γ1〉〈S1, γ1〉, we get that for all (h′1, h

′
2,D′, Φ′′) ∈ PΦ(w′)

there exists (h1, h2,D, Φ′) ∈ PΦ(w), two traces T1, T2 and two environments γ′1, γ
′
2

such that 〈S1, γ
′
1〉 , 〈S2, γ

′
2〉) ∈PA(Φ′′, (w′ :: L)) and

〈Si, γi, Φi, hi,Di〉
Ti−→ 〈Si, γ′i, Φ′′i , h′i,D′i〉

Then, one has

〈Si, γ′i, Φ′′i , h′i,D′i〉
〈ui〉,h′′i−−−−−→ 〈(Kn[vi], σi) :: S ′i, γ′i, Φ′′′i , h′i[h′′i],D′′i 〉

with Si = (Kn
i [•τn], σn) :: S ′i. From 〈S1, γ

′
1〉 , 〈S2, γ

′
2〉) ∈ PA(Φ′′, (w′ :: L)) and

v1 ∼w
′.D′

Φ′ v2, one get that

〈(Kn
1 [v1], σ) :: S ′1, γ′1〉 , 〈(Kn

2 [v2], σn) :: S ′2, γ′2〉 ∈PA(Φ′′, (w′ :: L))

The coinduction hypothesis then gives us that (Kn
1 [v1],Kn

2 [v2]) ∈ EA JτKΦO·Φ′ (w
′, w0).

Then, we prove that (γ1, γ2) ∈ GA JΦP KΦO w. Let (f1, f2, σ → σ′) ∈ ΦP with
γi(fi) = ui, one must prove that (u1, u2) ∈ VA Jσ → σ′KΦO w. To do so, let us
consider w′ w∗pub w, Φ′ a span disjoint from ΦO, and v1, v2 two abstract values
such that (vi, Φ

′
i) ∈ JτK and v1 ∼w

′.D′
Φ′ v2 One must then prove that (u1v1, u2v2) ∈

EA JτKΦO·Φ′ (w
′, w0).

From FaitfulΦ(w)〈S1, γ1〉〈S1, γ1〉 one get that for all (h′1, h
′
2,D′, Φ′′) ∈ PΦ(w′)

there exists (h1, h2,D, Φ′) ∈ PΦ(w) and two traces T1, T2 and two reduced configura-
tions (〈S ′1, γ′1〉 , 〈S ′2, γ′2〉) ∈PA(Φ′′, (w′ :: L′)) such that

〈Si, γi, Φi, hi,Di〉
Ti−→ 〈S ′i, γ′i, Φ′′i , h′i,D′i〉

Then, one has 〈S ′i, γ′i, Φ′′i , h′i,D′i〉
fi〈vi〉,h′′i−−−−−−→ 〈(ui vi, σ′) :: S ′i, γ′i, Φ′′′i , h′i[h′′i],D′′i 〉, so

from (〈S ′1, γ′1〉 , 〈S ′2, γ′2〉) ∈PA(Φ′′, (w′ :: L′)) one get that (〈(u1 v1, σ
′) :: S ′1, γ′1〉 , 〈(u2 v2, σ

′) :: S ′2, γ′2〉) ∈
PA(Φ′′′, (w′′ :: L′)), so the coinduction hypothesis gives us that (u1v1, u2v2) ∈ EA JτKΦO·Φ′ (w

′, w0).
�

36

F Kripke Open Bisimulations at work

This section shows on well-known examples of the literature how to use direct-style
reasoning, spans of names, LTSs and reasoning on divergence—which constitute the
main concepts of KOBs.

In order to define transitions in a concise way, we use a representation with a pair
of pre- and post-condition {P} V {Q} between two states. P and Q are predicates
written in (Peano) arithmetic, together with heap predicates l 7→i u, where the index i
indicates whether we consider the left or the right heap, and u is either a closed value,
or a logical variable. Such heap predicates are transformed to equality predicates using

the predicate transformer HTh1,h2(P) defined as HTh1,h2(l 7→i u)
def
= hi(l) = u

and just propagating the definition on logical connectives. We also need to keep track
of divergence transitions, indicated by the symbol in the postcondition. This is done
using the predicate Divb,b′(P) defined as b′ = true if appears in P , and as b = b′

otherwise. Then, {P}V {Q} between two states s, s′ corresponds to the transition{(
(s, h1, h2,D, b),

(s′, h′1, h
′
2,D′, b′)

) ∣∣∣∃−→z .HTh1,h2(P)∧
HTh′1,h

′
2
(Q) ∧Divb,b′(Q)

}
where −→z ranges over logical variables of P,Q.

F.1 Disclosed Locations

We now present how to reason on equivalence of programs with an explicit span (see
Section 2.3) on disclosed locations, contained in worlds. Let consider the following
terms:

M1 = λf. let x, y = ref 0 in f x; f y

M2 = λf. let x = ref 0 in f x; f x .
They are not contextually equivalent because the former discloses two different loca-
tions lx, ly during the two callbacks, while the later discloses only lx. This is apparent
in an attempt to prove they are related since we need to build a spanD = (lx, lx) during
the proof, and then we try to add (lx, ly) to it, which is not possible since it would not
be a span anymore.

The two following terms:
M1 = λf. let x = ref 0 in f x

M2 = λf. let x = ref 0 in f x; x := 1

are also not equivalent, since lx does not store the same value at the end of the execution,
and this is observable by contexts since lx has been disclosed. Trying to prove that these
terms are related, we failed to conclude since we would have to show that there exists
a world w s.t. (i) it contains the span D = (lx, lx), (ii) the two heaps [lx 7→ 0] and
[lx 7→ 1] satisfies the constraint w, which is not possible since to satisfy the constraint
w, one would need 0 = 1 (whatever w is, as soon as its span contains D).

F.2 Finite presentation of a infinite STS

We now consider the callback with lock example (taken from [1]) that compares two
encoding of a counter object:

37

{>}V {lx 7→i 0, lb 7→i false}

{lx 7→i n}V
{lx 7→i n+ 1,
lb 7→i true}

{lx 7→i n}V
{lx 7→i n, lb 7→i false}

{lx 7→i n}V
{lx 7→i n+ 1,
lb 7→i true}

Fig. 9. State transition system for the callback with lock example.

M cbl
1

def
= C [f(); x :=!x + 1]

M cbl
2

def
= C [let n =!x in f(); x := n + 1]

where C
def
= let b = ref true in let x = ref 0 in

(λf.if !b then b := false; • ; b := true else (), λ_.!x)

Using an STS approach, two states are needed for each natural number stores in the
location x, to keep track of the increment of the counter [2]. To avoid using an infinite
transition system, which can be problematic in order to automatize the reasoning, we
rather introduce the WTS depicted in Figure 9, in order to use Hoare-style description of
the heap—relating heaps before the transition to heaps after the transition. Such labels
are written {P} V {Q}, where P,Q are predicates on heaps. The increment of the
counter is now modeled using the pre- and post-conditions {lx 7→i n} V {lx 7→i

n + 1} which allows to provide an WTS with only three states. Besides this technical
improvement, the proof of [2] can be adapted directly in our framework, in the same
way the well-bracketed state change example has been adapted in Section 4.3.

F.3 Dealing with Divergence

There is one loophole in the notion of synchronization of callbacks, when terms can
diverge and thus do not return control to contexts. For example, the two following terms
are contextually equivalent:

λf.f();⊥Unit 'ctx λf.⊥Unit

even if the second one do not perform any callback. This appears in game semantics
via the fact that plays corresponding to interactions where Opponent (i.e., contexts)
interrogates the λ-abstractions are never complete, that is Player (i.e., the term) do not
answer to this first Opponent question. To prove such equivalences, one needs to tag
specifically such paths in the control flow. This can be done using inconsistent states,
as introduced in [2]. The idea is that with such states, we promise that the term is going
to diverge at one point, before returning a value, thus we do not need to enforce the
synchronization of callbacks.

38

0 1 2

3 4

R R

R3 R4
R3

R
def
= {>}V {lx 7→1 false, ly 7→1 false}

R3
def
= {>}V {lx 7→1 true, ly 7→1 false}

R4
def
= {>}V {lx 7→1 false, ly 7→1 true, }

Fig. 10. State transition system for the deferred divergence example.

To exemplify this idea, we consider the following “deferred divergence” example,
still taken from [2]:

Mdd
1 = let x = ref false in let y = ref false in

λf.f(λ_.if !x then ⊥Unit else y := true);
if !y then ⊥Unit else x := true

Mdd
2 = λf.f(λ_.⊥Unit)

Figure 10 shows the WTS that allows us to prove that the two terms are equivalent
by using the symbol to indicate that the world becomes inconsistent while taking the
transition to the right above state. It is similar to the one used in [2].

We now prove that (Mdd
1 ,Mdd

2) ∈ EA JτKε (w0, w0) where τ = ((Unit→ Unit)→
Unit)→ Unit and w0 = (0, ε, ε,∅, false). For sake of simplicity, we do not take into
account any span on locations D here, since there is no disclosure of locations so it
would be always empty. Taking (h1, h2, e) ∈ Pε(w0), we have h1 = h2 = ε, and
e = ε, so (Mdd

1 , ε)→∗ (v1, h
′
1) where

– v1
def
= λf.f(λ_.if !lx then ⊥Unit else ly := true); if !ly then ⊥Unit else lx := true

– h′1
def
= [lx 7→ false, ly 7→ false].

So defining w1 as (1, h′1, ε,∅, false), we easily check that w1 wpub w0, cons(w1)
and (h′1, ε) ∈ Qε(w1). So we now have to prove that (v1,M

dd
2) ∈ VA JτKε w1.

Considering any world w′ w∗ w1 and Φ defined as (f1, f2, (Unit → Unit) →
Unit), this leads to prove that for all (h1, _) ∈ P_(w′), there exists a world w′′ w w′

such that (h1, _,) ∈ P_(w′′) (M ′1,M
′
2) ∈ EA JUnitKΦ (w′′, w′′) where

– M ′1
def
= f1(λ_.if !lx then ⊥Unit else ly := true); if !ly then ⊥Unit else lx := true

– M ′2
def
= f2(λ_.⊥Unit).

We reason by case analysis on w′, which can either be equal to w1 or to:

– w2
def
= (2, [lx 7→1 false, ly 7→1 false], ε,∅, false),

– w3
def
= (3, [lx 7→1 true, ly 7→1 false], ε,∅, false),

39

– w 4
def
= (4, [lx 7→1 false, ly 7→1 true], ε,∅, true).

If w′ is equal to w1, we take w′′ equal to w2. Otherwise, we take w′′ equal to w′. Then,
we have to prove that:

– (λ_.if !lx then ⊥Unit else ly := true, λ_.⊥Unit) ∈ VA JUnit→ UnitKΦ w
′′

– (•; if !ly then ⊥Unit else lx := true, •) ∈ KA JUnit,UnitKΦ (w′′, w′′)
To prove the first point, we have to consider any world w′′′ w∗ w′′ and prove that

(if !lx then ⊥Unit else ly := true︸ ︷︷ ︸
M ′′1

,⊥Unit)

is in EA JUnitKΦ (w′′′, w′′′). Let us first consider the worlds w′′′ where lx 7→1 false,
namely w2 and w 4 , then taking (h1, _) ∈ P_(w′′) we have (M ′′1 , h1) 7→∗ (Unit, [lx 7→
false, ly 7→ true]) and indeed we have w 4 wpub w′′′ such that [lx 7→ false, ly 7→
true] ∈ Qε(w

4). Moreover, w 4 is inconsistent, so from () ∈ V1

A JUnitKΦ w

4 , we

get that (M ′′1 , h
′
1) ∈ E1

A JUnitKΦ1
(w′′′, w′′′) and (⊥Unit, ε) ∈ E2

A JUnitKΦ2
(w′′′, w′′′).

Considering now the world w3 where lx 7→1 true, it is straightforward to prove the
first point since both terms are diverging.

Finally, we prove the second point. To do so, we must consider any worldw′′′ w∗pub
w′′ and prove that

(if !ly then ⊥Unit else lx := true, ()) ∈ EA JUnitKΦ (w′′′, w′′)

We first consider the worldsw′′′ where ly 7→1 true, namelyw 4 . Since it is inconsistent,
we have indeed that () ∈ E2

A JUnitKΦ w

4 . And considering worlds w′′′ where ly 7→1

false, namely w2, w3, then we have indeed the existence of a world, namely w3, such
that w3 wpub w

′′′, [lx 7→ true, ly 7→ false] ∈ Qε(w3) and ((), ()) ∈ VA JUnitKΦ w3.

40

	Kripke Open Bisimulation

